Suppr超能文献

基于基尼指数的模糊朴素贝叶斯和 blast 细胞分割在多细胞血涂片图像白血病检测中的应用。

GFNB: Gini index-based Fuzzy Naive Bayes and blast cell segmentation for leukemia detection using multi-cell blood smear images.

机构信息

Calcutta Institute of Technology, Howrah, West Bengal, India.

Kalyani Government Engineering College, Kalyani, West Bengal, India.

出版信息

Med Biol Eng Comput. 2020 Nov;58(11):2789-2803. doi: 10.1007/s11517-020-02249-y. Epub 2020 Sep 15.

Abstract

The blood cell counting and classification ensures the evaluation and diagnosis of a number of diseases. The analysis of white blood cells (WBCs) permits us to detect the acute lymphoblastic leukemia (ALL), a type of blood cancer that causes fatality when untreated. At present, the morphological analysis of blood cells is performed manually by skilled operators, which holds numerous drawbacks. The manual techniques for leukemia detection are time-consuming and show less accurate results. Hence, there is a need for an automatic method for detecting leukemia. In order to overcome the demerits associated with the manual methods of counting and classifying, an automatic method of blast cell counting and leukemia classification is progressed. This paper proposes a leukemia detection method, using the Gini index-based Fuzzy Naive Bayes (GFNB) classifier that is the integration of Gini index and Fuzzy Naive Bayes classifier. Initially, the input multi-cell blood smear image is subjected to pre-processing, and the blast cell is segmented using the adaptive thresholding. Then, the blast cells are counted using the proposed classifier so as to decide the presence of leukemia for the effective diagnosis. Experimental analysis using the ALL-IDB1 database confirms that the proposed method operates better than the existing methods in terms of accuracy, specificity, and sensitivity that are found to be 0.9591, 0.9599, and 1, respectively. The experimental results reveal that the proposed method is reliable and accurate. Also, the proposed system can help the physicians to improve and speed up their process.Graphical abstract Leukemia is caused by the excess production of the immature leucocytes in the bone marrow that expose the human body to lose the tendency to fight against the diseases. Leukemia classification is highly needed as in the later stage, failure of the diagnosis steps may lead to the death of the person. Moreover, some countries do not have any study against the diagnosis steps of leukemia and it highly exists among the low-income people. In order to analyze the type of leukemia and to provide an effective diagnosis strategy, the paper presents a fast and highly accurate classification method. The main aim of the paper is to propose a method to perform the leukemia classification through the segmentation and classification of the WBC cells using the multi-cell blood smear images. The major steps involved in the leukemia classification are pre-processing, segmentation, feature extraction, and classification. The input blood smear image is enhanced in the pre-processing step and the pre-processed image is subjected to segmentation using the LUV color transformation and Adaptive Thresholding strategy. The features are extracted from the individual segments and they are presented to the classifier for the classification. The features extracted are shape, texture, and count of the blast cells, for which the grid-based shape extraction, local gradient pattern (LGP)-based texture features, and pixel threshold-based counting of the blast cells are employed. The proposed classifier is developed using the Gini index and Fuzzy Naive Bayes classifier.

摘要

血细胞计数和分类可用于评估和诊断多种疾病。白细胞(WBC)的分析可帮助我们检测急性淋巴细胞白血病(ALL),这是一种未治疗时可能致命的血癌。目前,血细胞的形态分析是由熟练的操作人员手动完成的,但这种方法存在诸多缺陷。用于白血病检测的手动技术既耗时又准确性较低。因此,需要一种自动的白血病检测方法。为了克服手动计数和分类方法的缺点,我们提出了一种自动的 blast 细胞计数和白血病分类方法。本文提出了一种基于基尼指数的模糊朴素贝叶斯(GFNB)分类器的白血病检测方法,该分类器集成了基尼指数和模糊朴素贝叶斯分类器。首先,对输入的多细胞血涂片图像进行预处理,使用自适应阈值对 blast 细胞进行分割。然后,使用所提出的分类器对 blast 细胞进行计数,以有效诊断白血病。使用 ALL-IDB1 数据库进行的实验分析表明,与现有的方法相比,所提出的方法在准确性、特异性和灵敏度方面表现更好,分别为 0.9591、0.9599 和 1。实验结果表明,该方法可靠且准确。此外,该系统还可以帮助医生提高和加快诊断过程。

摘要

白血病是由于骨髓中不成熟白细胞的过度产生,使人体失去抵抗疾病的能力而引起的。白血病的分类非常重要,因为在后期,如果诊断步骤失败,可能会导致患者死亡。此外,一些国家没有对白血病的诊断步骤进行任何研究,而低收入人群中这种疾病的发病率很高。为了分析白血病的类型并提供有效的诊断策略,本文提出了一种快速且高度准确的分类方法。本文的主要目的是提出一种使用多细胞血涂片图像对 WBC 细胞进行分割和分类来进行白血病分类的方法。白血病分类的主要步骤包括预处理、分割、特征提取和分类。在预处理步骤中,输入的血涂片图像得到增强,然后使用 LUV 颜色变换和自适应阈值策略对预处理后的图像进行分割。从各个片段中提取特征,并将其提供给分类器进行分类。所提取的特征包括 blast 细胞的形状、纹理和数量,为此采用了基于网格的形状提取、基于局部梯度模式(LGP)的纹理特征以及基于像素阈值的 blast 细胞计数。所提出的分类器是使用基尼指数和模糊朴素贝叶斯分类器开发的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验