Suppr超能文献

成分网络荟萃分析与不连通网络中匹配方法的比较:一个案例研究。

Component network meta-analysis compared to a matching method in a disconnected network: A case study.

机构信息

Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany.

Competence Center for Methodology and Statistics, Department of Population Health, Luxembourg Institute of Health, Strassen, Luxembourg.

出版信息

Biom J. 2021 Feb;63(2):447-461. doi: 10.1002/bimj.201900339. Epub 2020 Jun 28.

Abstract

Network meta-analysis is a method to combine evidence from randomized controlled trials (RCTs) that compare a number of different interventions for a given clinical condition. Usually, this requires a connected network. A possible approach to link a disconnected network is to add evidence from nonrandomized comparisons, using propensity score or matching-adjusted indirect comparisons methods. However, nonrandomized comparisons may be associated with an unclear risk of bias. Schmitz et al. used single-arm observational studies for bridging the gap between two disconnected networks of treatments for multiple myeloma. We present a reanalysis of these data using component network meta-analysis (CNMA) models entirely based on RCTs, utilizing the fact that many of the treatments consisted of common treatment components occurring in both networks. We discuss forward and backward strategies for selecting appropriate CNMA models and compare the results to those obtained by Schmitz et al. using their matching method. CNMA models provided a good fit to the data and led to treatment rankings that were similar, though not fully equal to that obtained by Schmitz et al. We conclude that researchers encountering a disconnected network with treatments in different subnets having common components should consider a CNMA model. Such models, exclusively based on evidence from RCTs, are a promising alternative to matching approaches that require additional evidence from observational studies. CNMA models are implemented in the R package netmeta.

摘要

网络荟萃分析是一种方法,用于结合比较给定临床情况的多种不同干预措施的随机对照试验(RCT)的证据。通常,这需要一个连接的网络。将不相连的网络连接的一种可能方法是使用倾向评分或匹配调整间接比较方法添加来自非随机比较的证据。然而,非随机比较可能与不明确的偏倚风险相关。Schmitz 等人使用单臂观察性研究来弥合多发性骨髓瘤两种不相连的治疗网络之间的差距。我们使用完全基于 RCT 的成分网络荟萃分析(CNMA)模型对这些数据进行了重新分析,利用许多治疗方法都包含两种网络中常见的共同治疗成分这一事实。我们讨论了选择适当的 CNMA 模型的前向和后向策略,并将结果与 Schmitz 等人使用其匹配方法获得的结果进行了比较。CNMA 模型很好地拟合了数据,并导致了与 Schmitz 等人获得的治疗排名相似的治疗排名,但不完全相同。我们得出结论,遇到具有共同成分的不同子网中的治疗方法的不相连网络的研究人员应考虑使用 CNMA 模型。这些仅基于 RCT 证据的模型是对需要来自观察性研究的额外证据的匹配方法的有前途的替代方法。CNMA 模型在 R 包 netmeta 中实现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验