Thangasamy Pitchai, Oh Saewoong, Nam Sanghee, Randriamahazaka Hyacinthe, Oh Il-Kwon
National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue Jean-Antoine de Baïf, Paris, F-75013, France.
Small. 2020 Aug;16(31):e2001665. doi: 10.1002/smll.202001665. Epub 2020 Jun 29.
Here, ferrocene(Fc)-incorporated cobalt sulfide (Co S ) nanostructures directly grown on carbon nanotube (CNT) or carbon fiber (CF) networks for electrochemical oxygen evolution reaction (OER) using a facile one-step solvothermal method are reported. The strong synergistic interaction between Fc-Co S nanostructures and electrically conductive CNTs results in the superior electrocatalytic activity with a very small overpotential of ≈304 mV at 10 mA cm and a low Tafel slope of 54.2 mV dec in 1 m KOH electrolyte. Furthermore, the Fc-incorporated Co S (FCoS) nanostructures are directly grown on the acid pretreated carbon fiber (ACF), and the resulting fabricated electrode delivers excellent OER performance with a low overpotential of ≈315 mV at 10 mA cm . Such superior OER catalytic activity can be attributed to 3D Fc-Co S nanoarchitectures that consist of a high concentration of vertical nanosheets with uniform distribution of nanoparticles that afford a large number of active surface areas and edge sites. Besides, the tight contact interface between ACF substrate and Fc-Co S nanostructures could effectively facilitate the electron transfer rate in the OER. This study provides valuable insights for the rational design of energy storage and conversion materials by the incorporation of other transition metal into metal sulfide/oxide nanostructures utilizing metallocene.
本文报道了采用简便的一步溶剂热法,在碳纳米管(CNT)或碳纤维(CF)网络上直接生长的掺二茂铁(Fc)的硫化钴(CoS)纳米结构用于电化学析氧反应(OER)。Fc-CoS纳米结构与导电CNT之间的强协同相互作用导致了优异的电催化活性,在1 m KOH电解液中,在10 mA cm下过电位非常小,约为304 mV,塔菲尔斜率低至54.2 mV dec。此外,掺Fc的CoS(FCoS)纳米结构直接生长在酸预处理的碳纤维(ACF)上,所得制备电极在10 mA cm下具有约315 mV的低过电位,表现出优异的OER性能。这种优异的OER催化活性可归因于三维Fc-CoS纳米结构,其由高浓度的垂直纳米片组成,纳米颗粒分布均匀,提供了大量的活性表面积和边缘位点。此外,ACF基底与Fc-CoS纳米结构之间紧密的接触界面可有效促进OER中的电子转移速率。本研究为通过利用金属茂将其他过渡金属掺入金属硫化物/氧化物纳米结构中来合理设计储能和转换材料提供了有价值的见解。