Suppr超能文献

“粘性”表面SbTe模板通过生长主导的结晶实现相变材料GeSbTe的快速存储器切换。

"Stickier"-Surface SbTe Templates Enable Fast Memory Switching of Phase Change Material GeSbTe with Growth-Dominated Crystallization.

作者信息

Feng Jinlong, Lotnyk Andriy, Bryja Hagen, Wang Xiaojie, Xu Meng, Lin Qi, Cheng Xiaomin, Xu Ming, Tong Hao, Miao Xiangshui

机构信息

Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China.

Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, Leipzig 04318, Germany.

出版信息

ACS Appl Mater Interfaces. 2020 Jul 22;12(29):33397-33407. doi: 10.1021/acsami.0c07973. Epub 2020 Jul 13.

Abstract

Ge-Sb-Te (GST)-based phase-change memory (PCM) excels in the switching performance but remains insufficient of the operating speed to replace cache memory (the fastest memory in a computer). In this work, a novel approach using SbTe templates is proposed to boost the crystallization speed of GST by five times faster. This is because such a GST/SbTe heterostructure changes the crystallizing mode of GST from the nucleation-dominated to the faster growth-dominated one, as confirmed by high-resolution transmission electron microscopy, which captures the interface-induced epitaxial growth of GST on SbTe templates in devices. molecular dynamic simulations reveal that SbTe templates can render GST sublayers faster crystallization speed because SbTe's "sticky" surface contains lots of unpaired electrons that may attract Ge atoms with less antibonding interactions. Our work not only proposes a template-assisted PCM with fast speed but also uncovers the hidden mechanism of SbTe's sticky surface, which can be used for future material selection.

摘要

基于锗锑碲(GST)的相变存储器(PCM)在开关性能方面表现出色,但在运行速度上仍不足以取代高速缓存存储器(计算机中最快的存储器)。在这项工作中,提出了一种使用锑碲(SbTe)模板的新方法,将GST的结晶速度提高了五倍。这是因为这种GST/SbTe异质结构将GST的结晶模式从以成核为主转变为以更快的生长为主,高分辨率透射电子显微镜证实了这一点,该显微镜捕捉到了器件中GST在SbTe模板上的界面诱导外延生长。分子动力学模拟表明,SbTe模板可以使GST子层具有更快的结晶速度,因为SbTe的“粘性”表面含有大量未配对电子,这些电子可能以较少的反键相互作用吸引锗原子。我们的工作不仅提出了一种具有快速速度的模板辅助PCM,还揭示了SbTe粘性表面的隐藏机制,可用于未来的材料选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验