Institute of Oral Science, Chung Shan Medical University, Taichung 402, Taiwan.
Department of Stomatology, Chung Shan Medical University Hospital, Taichung 402, Taiwan and School of Dentistry, Chung Shan Medical University, Taichung 402, Taiwan.
J Mater Chem B. 2020 Jul 22;8(28):6034-6047. doi: 10.1039/d0tb01202e.
Calcium silicate (CaSi) materials have been used for bone repair and generation due to their osteogenic properties. Tailoring the surface chemistry and structure of CaSi can enhance its clinical performance. There is no direct comparison between microscale and nanoscale CaSi particles. Therefore, this article aimed to compare and evaluate the surface chemistry, structure, and in vitro properties of microscale CaSi (μCaSi) and nanoscale CaSi (nCaSi) particles synthesized by the sol-gel method and precipitation method, respectively. As a result, the semi-crystalline μCaSi powders were assemblies of irregular microparticles containing a major β-dicalcium silicate phase, while the amorphous nCaSi powders consisted of spherical particles with a size of 100 nm. After soaking in a Tris-HCl solution, the amount of Si ions released from nCaSi was higher than that released from μCaSi, but there was no significant difference in Ca ion release between the two CaSi particles. Compared to microscale CaSi (μCaSi), nanoscale CaSi (nCaSi) significantly enhanced the growth and differentiation of human mesenchymal stem cells (hMSC) and inhibited the function of RAW 264.7 macrophages. In the case of antibacterial activity against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus), nanoscale nCaSi displayed a higher bacteriostatic ratio, a greater growth inhibition zone and more reactive oxygen species (ROS) production than microscale μCaSi. The conclusion is that nanoscale CaSi had greater antibacterial and osteogenic activity compared to microscale CaSi. Next generation CaSi-based materials with unique properties are emerging to meet specific clinical needs.
硅酸钙(CaSi)材料因其成骨性而被用于骨修复和再生。通过调整 CaSi 的表面化学性质和结构可以提高其临床性能。目前还没有微尺度和纳米尺度 CaSi 颗粒的直接比较。因此,本文旨在比较和评估溶胶-凝胶法和沉淀法分别合成的微尺度 CaSi(μCaSi)和纳米尺度 CaSi(nCaSi)颗粒的表面化学性质、结构和体外性能。结果表明,半晶态的μCaSi 粉末是由含有主要β-二硅酸钙相的不规则微颗粒组装而成,而无定形的 nCaSi 粉末则由 100nm 大小的球形颗粒组成。在 Tris-HCl 溶液浸泡后,nCaSi 释放的 Si 离子量高于 μCaSi,但两种 CaSi 颗粒释放的 Ca 离子量没有显著差异。与微尺度 CaSi(μCaSi)相比,纳米尺度 CaSi(nCaSi)显著促进了人间充质干细胞(hMSC)的生长和分化,并抑制了 RAW 264.7 巨噬细胞的功能。在针对革兰氏阴性大肠杆菌(E. coli)和革兰氏阳性金黄色葡萄球菌(S. aureus)的抗菌活性方面,纳米尺度 nCaSi 表现出更高的抑菌率、更大的抑菌生长圈和更多的活性氧(ROS)产生,而微尺度 μCaSi 则表现出更低的抑菌率、更小的抑菌生长圈和更少的活性氧(ROS)产生。结论是纳米尺度 CaSi 比微尺度 CaSi 具有更强的抗菌和成骨活性。具有独特性能的下一代 CaSi 基材料正在不断涌现,以满足特定的临床需求。