Raut Hemant Kumar, Schwartzman Alan F, Das Rupambika, Liu Fan, Wang Lifeng, Ross Caroline A, Fernandez Javier G
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Division of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Republic of Singapore.
ACS Nano. 2020 Aug 25;14(8):9771-9779. doi: 10.1021/acsnano.0c01511. Epub 2020 Jul 6.
The creation of structural composites with combined strength, toughness, low density, and biocompatibility remains a long-standing challenge. On the other hand, bivalve marine shells--exhibit strength, stiffness, and toughness that surpass even that of the nacre that is the most widely mimicked model for structural composites. The superior mechanical properties of shells originate from their cross-lamella design, comprising CaCO mineral platelets arranged in an "interlocked" herringbone fashion. Reproduction of such hierarchical designs could offer multifunctionality, potentially combining strength and toughness at low densities, and the capability for seamless integration with biological systems. Here, we demonstrate manufacturing of the cross-lamella design by biomineralizing aragonite films with sawtooth patterns and assembling them in a chitosan/fibroin matrix to generate a composite with interlocked mineral layers. The resultant composite, with a similar constitution to that of the biological counterpart, nearly doubles the strength of previous nacre-mimetic composites while improving the tensile toughness and simultaneously exhibiting stiffness and biocompatibility.
创造兼具强度、韧性、低密度和生物相容性的结构复合材料仍然是一个长期存在的挑战。另一方面,双壳类海洋贝壳展现出的强度、刚度和韧性甚至超过了珍珠母,而珍珠母是结构复合材料中被广泛模仿的模型。贝壳卓越的力学性能源于其交叉薄片设计,该设计由以“互锁”人字形排列的碳酸钙矿物薄片组成。复制这种分级设计可以提供多功能性,有可能在低密度下结合强度和韧性,并具备与生物系统无缝整合的能力。在此,我们展示了通过生物矿化具有锯齿图案的文石薄膜并将它们组装在壳聚糖/丝素蛋白基质中以生成具有互锁矿物层的复合材料,从而制造出交叉薄片设计。所得复合材料与生物对应物具有相似的组成,其强度几乎是先前仿珍珠母复合材料的两倍,同时提高了拉伸韧性,并兼具刚度和生物相容性。