Suppr超能文献

受生物启发的羧基化纳米纤维素稳定非晶碳酸钙使机械坚固、可修复和传感的生物复合材料成为可能。

Bioinspired Stabilization of Amorphous Calcium Carbonate by Carboxylated Nanocellulose Enables Mechanically Robust, Healable, and Sensing Biocomposites.

机构信息

State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.

Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350007, China.

出版信息

ACS Nano. 2023 Apr 11;17(7):6664-6674. doi: 10.1021/acsnano.2c12385. Epub 2023 Mar 22.

Abstract

Nature builds numerous structurally complex composites with fascinating mechanical robustness and functionalities by harnessing biopolymers and amorphous calcium carbonate (ACC). The key to successfully mimicking these natural designs is efficiently stabilizing ACC, but developing highly efficient, biodegradable, biocompatible, and sustainable stabilizing agents remains a grand challenge since anhydrous ACC is inherently unstable toward crystallization in the wet state. Inspired by the stabilized ACC in crustacean cuticles, we report the efficient stabilization ability of the most abundant biopolymer-cellulose nanofibrils (CNFs) for ACC. Through the cooperative stabilizing effect of surface carboxyl groups and a rigid segregated network, the CNFs exhibit long-term stability (more than one month) and achieved a stabilization efficiency of 3.6 and 4.4 times that of carboxymethyl cellulose (CMC) and alginate, respectively, even higher than poly(acrylic acid). The resulting CNF/ACC dispersions can be constructed into transparent composite films with the high strength of 286 MPa and toughness up to 28.5 MJ/m, which surpass those of the so far reported synthetic biopolymer-calcium carbonate/phosphate composites. The dynamic interfacial interaction between nanocomponents also provides the composite films with good self-healing properties. Owing to their good wet stability, the composite films present high humidity sensitivity for monitoring respiration and finger contact.

摘要

自然界通过利用生物聚合物和无定形碳酸钙 (ACC) 构建了许多具有迷人机械强度和功能的结构复杂的复合材料。成功模拟这些自然设计的关键是有效地稳定 ACC,但是开发高效、可生物降解、生物相容和可持续的稳定剂仍然是一个巨大的挑战,因为无水 ACC 在湿态下结晶是固有不稳定的。受甲壳类动物外骨骼中稳定的 ACC 的启发,我们报告了最丰富的生物聚合物——纤维素纳米纤维 (CNF) 对 ACC 的有效稳定能力。通过表面羧基基团和刚性隔离网络的协同稳定作用,CNF 表现出长期稳定性(一个月以上),并实现了比羧甲基纤维素 (CMC) 和藻酸盐分别高 3.6 倍和 4.4 倍的稳定效率,甚至高于聚丙烯酸。所得的 CNF/ACC 分散体可构建成具有高强度 286 MPa 和韧性高达 28.5 MJ/m 的透明复合膜,超过了迄今为止报道的合成生物聚合物-碳酸钙/磷酸盐复合材料。纳米复合材料之间的动态界面相互作用也为复合膜提供了良好的自修复性能。由于其良好的湿稳定性,复合膜对呼吸和手指接触具有高湿度敏感性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a971/10100558/ccf6ac33f5a0/nn2c12385_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验