National Institute of Technology, Tomakomai College, Tomakomai, Japan.
Tohoku University, Sendai, Japan.
Biomed Mater Eng. 2020;31(3):169-178. doi: 10.3233/BME-201088.
Thrombus formation and hemolysis are important factors in developing blood pumps and mechanical heart valve prostheses. These phenomena are induced by flow properties. High shear stress induces platelet and red cell damage. Computational fluid dynamics (CFD) analysis calculates shear stress of fluid and particle pathlines of blood cells.
We studied blood cell damage in a blood pump by using CFD analysis and proposed a method for estimating blood damage.
We analyzed a pulsatile blood pump that was developed as a totally implantable left ventricular assist system at Tokai University. Shear stress on blood cells throughout pulsatile blood pumps were analyzed using CFD software.
Based on the assumption that the effect of shear stress on platelets is accumulated along the trace, we proposed a method for estimating blood damage using the damage parameter D. Platelet damage parameter is calculated regardless of the division time 𝛥t which is dependent on the calculation time step. The results of the simulations are in good agreement with Giersiepen's equation obtained from the experiments.
The history of shear stress on a particle was calculated using CFD analysis. The new damage parameter D yields a value close to that of Giersiepen's equation with small errors.
血栓形成和溶血是开发血液泵和机械心脏瓣膜假体的重要因素。这些现象是由流动特性引起的。高切应力会导致血小板和红细胞受损。计算流体动力学(CFD)分析计算流体的切应力和血细胞的轨迹线。
我们通过 CFD 分析研究了血液泵中的血细胞损伤,并提出了一种估计血液损伤的方法。
我们分析了东海大学开发的作为完全植入式左心室辅助系统的脉动血液泵。使用 CFD 软件分析了整个脉动血液泵中血细胞的切应力。
基于切应力对血小板的影响沿迹线累积的假设,我们提出了一种使用损伤参数 D 估计血液损伤的方法。血小板损伤参数的计算与依赖于计算时间步长的划分时间 𝛥t 无关。模拟结果与 Giersiepen 方程的实验结果吻合较好。
使用 CFD 分析计算了粒子上的切应力历史。新的损伤参数 D 产生的值与 Giersiepen 方程的值接近,误差较小。