Suppr超能文献

使用微流控装置对酵母 MAPK 信号网络进行定量分析和串扰研究。

Quantitative analysis of yeast MAPK signaling networks and crosstalk using a microfluidic device.

机构信息

Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Yuseong-Gu, Daejeon 305-764, Republic of Korea.

出版信息

Lab Chip. 2020 Aug 7;20(15):2646-2655. doi: 10.1039/d0lc00203h. Epub 2020 Jun 29.

Abstract

Eukaryotic cells developed complex mitogen-activated protein kinase (MAPK) signaling networks to sense their intra- and extracellular environment and respond to various stress conditions. For example, S. cerevisiae uses five distinct MAP kinase pathways to orchestrate meiosis or respond to mating pheromones, osmolarity changes and cell wall stress. Although each MAPK module has been studied individually, the mechanisms underlying crosstalk between signaling pathways remain poorly understood, in part because suitable experimental systems to monitor cellular outputs when applying different signals are lacking. Here, we investigate the yeast MAPK signaling pathways and their crosstalk, taking advantage of a new microfluidic device coupled to quantitative microscopy. We designed specific micropads to trap yeast cells in a single focal plane, and modulate the magnitude of a given stress signal by microfluidic serial dilution while keeping other signaling inputs constant. This approach enabled us to quantify in single cells nuclear relocation of effectors responding to MAPK activation, like Yap1 for oxidative stress, and expression of stress-specific reporter expression, like pSTL1-qV and pFIG1-qV for high-osmolarity or mating pheromone signaling, respectively. Using this quantitative single-cell analysis, we confirmed bimodal behavior of gene expression in response to Hog1 activation, and quantified crosstalk between the pheromone- and cell wall integrity (CWI) signaling pathways. Importantly, we further observed that oxidative stress inhibits pheromone signaling. Mechanistically, this crosstalk is mediated by Pkc1-dependent phosphorylation of the scaffold protein Ste5 on serine 185, which prevents Ste5 recruitment to the plasma membrane.

摘要

真核细胞发育出复杂的丝裂原活化蛋白激酶 (MAPK) 信号网络,以感知其细胞内和细胞外环境,并对各种应激条件作出反应。例如,酿酒酵母使用五种不同的 MAP 激酶途径来协调减数分裂或对交配信息素、渗透压变化和细胞壁应激作出反应。尽管每个 MAPK 模块都已被单独研究,但信号通路之间串扰的机制仍知之甚少,部分原因是缺乏合适的实验系统来监测应用不同信号时的细胞输出。在这里,我们利用一种新的与定量显微镜耦合的微流控设备来研究酵母 MAPK 信号通路及其串扰。我们设计了特定的微垫来将酵母细胞困在单个焦平面中,并通过微流控连续稀释来调节给定应激信号的幅度,同时保持其他信号输入不变。这种方法使我们能够在单个细胞中定量测量响应 MAPK 激活的效应物(如 Yap1 对氧化应激)的核重定位,以及应激特异性报告基因表达(如 pSTL1-qV 和 pFIG1-qV 分别用于高渗透压或交配信息素信号)。使用这种定量单细胞分析,我们证实了 Hog1 激活时基因表达的双峰行为,并量化了信息素和细胞壁完整性 (CWI) 信号通路之间的串扰。重要的是,我们进一步观察到氧化应激抑制了信息素信号。从机制上讲,这种串扰是由 Pkc1 依赖性磷酸化支架蛋白 Ste5 的丝氨酸 185 介导的,这阻止了 Ste5 向质膜的募集。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验