Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 75901, USA.
Int J Mol Sci. 2021 Dec 17;22(24):13541. doi: 10.3390/ijms222413541.
Voltage-gated Na (Na) channels are the primary molecular determinant of the action potential. Among the nine isoforms of the Na channel α subunit that have been described (Na1.1-Na1.9), Na1.1, Na1.2, and Na1.6 are the primary isoforms expressed in the central nervous system (CNS). Crucially, these three CNS Na channel isoforms display differential expression across neuronal cell types and diverge with respect to their subcellular distributions. Considering these differences in terms of their localization, the CNS Na channel isoforms could represent promising targets for the development of targeted neuromodulators. However, current therapeutics that target Na channels lack selectivity, which results in deleterious side effects due to modulation of off-target Na channel isoforms. Among the structural components of the Na channel α subunit that could be pharmacologically targeted to achieve isoform selectivity, the C-terminal domains (CTD) of Na channels represent promising candidates on account of displaying appreciable amino acid sequence divergence that enables functionally unique protein-protein interactions (PPIs) with Na channel auxiliary proteins. In medium spiny neurons (MSNs) of the nucleus accumbens (NAc), a critical brain region of the mesocorticolimbic circuit, the PPI between the CTD of the Na1.6 channel and its auxiliary protein fibroblast growth factor 14 (FGF14) is central to the generation of electrical outputs, underscoring its potential value as a site for targeted neuromodulation. Focusing on this PPI, we previously developed a peptidomimetic derived from residues of FGF14 that have an interaction site on the CTD of the Na1.6 channel. In this work, we show that whereas the compound displays dose-dependent effects on the activity of Na1.6 channels in heterologous cells, the compound does not affect Na1.1 or Na1.2 channels at comparable concentrations. In addition, we show that the compound correspondingly modulates the action potential discharge and the transient Na+ of MSNs of the NAc. Overall, these results demonstrate that pharmacologically targeting the FGF14 interaction site on the CTD of the Na1.6 channel is a strategy to achieve isoform-selective modulation, and, more broadly, that sites on the CTDs of Na channels interacted with by auxiliary proteins could represent candidates for the development of targeted therapeutics.
电压门控钠 (Na) 通道是动作电位的主要分子决定因素。在已描述的 9 种 Na 通道 α 亚基同工型 (Na1.1-Na1.9) 中,Na1.1、Na1.2 和 Na1.6 是中枢神经系统 (CNS) 中主要表达的同工型。至关重要的是,这三种 CNS Na 通道同工型在神经元细胞类型之间表现出不同的表达,并在亚细胞分布方面存在差异。从它们的定位来看,这些差异表明 CNS Na 通道同工型可能是开发靶向神经调节剂的有希望的靶点。然而,目前针对 Na 通道的治疗方法缺乏选择性,这导致由于调制非靶向 Na 通道同工型而产生有害的副作用。在可以通过药理学靶向以实现同工型选择性的 Na 通道 α 亚基的结构成分中,Na 通道的 C 端结构域 (CTD) 是很有前途的候选物,因为它们显示出可观的氨基酸序列差异,从而能够与 Na 通道辅助蛋白进行功能独特的蛋白-蛋白相互作用 (PPI)。在伏隔核 (NAc) 中的中脑边缘多巴胺系统 (mesocorticolimbic circuit) 的关键脑区的中间棘神经元 (MSNs) 中,Na1.6 通道的 CTD 与其辅助蛋白成纤维细胞生长因子 14 (FGF14) 之间的 PPI 是产生电输出的核心,强调了其作为靶向神经调节的潜在价值。本研究聚焦于该 PPI,我们之前开发了一种源自 FGF14 残基的肽模拟物,该残基在 Na1.6 通道的 CTD 上具有相互作用位点。在这项工作中,我们表明,该化合物在异源细胞中对 Na1.6 通道的活性具有剂量依赖性影响,而在可比浓度下,该化合物不影响 Na1.1 或 Na1.2 通道。此外,我们表明该化合物相应地调节 NAc 的 MSNs 的动作电位放电和瞬时 Na+。总体而言,这些结果表明,靶向 Na1.6 通道的 CTD 上的 FGF14 相互作用位点是实现同工型选择性调制的策略,更广泛地说,Na 通道的 CTD 上与辅助蛋白相互作用的位点可能是开发靶向治疗的候选物。