1 Discipline of Neuroscience and Department of Anatomy and Physiology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
2 Department of Neurology, Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA.
Mol Pain. 2018 Jan-Dec;14:1744806918782229. doi: 10.1177/1744806918782229. Epub 2018 May 23.
Voltage-gated sodium channel Nav1.7 is a key molecule in nociception, and its dysfunction has been associated with various pain disorders. Here, we investigated the regulation of Nav1.7 biophysical properties by Fyn, an Src family tyrosine kinase. Nav1.7 was coexpressed with either constitutively active (Fyn) or dominant negative (Fyn) variants of Fyn kinase. Fyn elevated protein expression and tyrosine phosphorylation of Nav1.7 channels. Site-directed mutagenesis analysis identified two tyrosine residues (Y1470 and Y1471) located within the Nav1.7 DIII-DIV linker (L3) as phosphorylation sites of Fyn. Whole-cell recordings revealed that Fyn evoked larger changes in Nav1.7 biophysical properties when expressed in ND7/23 cells than in Human Embryonic Kidney (HEK) 293 cells, suggesting a cell type-specific modulation of Nav1.7 by Fyn kinase. In HEK 293 cells, substitution of both tyrosine residues with phenylalanine dramatically reduced current amplitude of mutant channels, which was partially rescued by expressing mutant channels in ND7/23 cells. Phenylalanine substitution showed little effect on Fyn-induced changes in Nav1.7 activation and inactivation, suggesting additional modifications in the channel or modulation by interaction with extrinsic factor(s). Our study demonstrates that Nav1.7 is a substrate for Fyn kinase, and the effect of the channel phosphorylation depends on the cell background. Fyn-mediated modulation of Nav1.7 may regulate DRG neuron excitability and contribute to pain perception. Whether this interaction could serve as a target for developing new pain therapeutics requires future study.
电压门控钠离子通道 Nav1.7 是痛觉传导的关键分子,其功能障碍与各种疼痛障碍有关。在这里,我们研究了 Fyn(Src 家族酪氨酸激酶)对 Nav1.7 生物物理特性的调节。Nav1.7 与组成型激活(Fyn)或显性负性(Fyn)变体的 Fyn 激酶共表达。Fyn 升高了 Nav1.7 通道的蛋白表达和酪氨酸磷酸化。定点突变分析确定了两个酪氨酸残基(Y1470 和 Y1471)位于 Nav1.7 的 DIII-DIV 连接体(L3)内,是 Fyn 的磷酸化位点。全细胞记录显示,当在 ND7/23 细胞中表达时,Fyn 引起 Nav1.7 生物物理特性的变化大于在人胚肾(HEK)293 细胞中表达时,这表明 Fyn 激酶对 Nav1.7 具有细胞类型特异性的调节作用。在 HEK 293 细胞中,用苯丙氨酸替代两个酪氨酸残基可显著降低突变通道的电流幅度,而在 ND7/23 细胞中表达突变通道可部分挽救。苯丙氨酸取代对 Nav1.7 的激活和失活的 Fyn 诱导变化几乎没有影响,这表明通道的其他修饰或与外在因素的相互作用的调节。我们的研究表明,Nav1.7 是 Fyn 激酶的底物,通道磷酸化的效果取决于细胞背景。Fyn 介导的 Nav1.7 调节可能调节 DRG 神经元兴奋性并有助于痛觉感知。这种相互作用是否可以作为开发新的疼痛治疗方法的靶点,需要进一步研究。