Division of General Pediatrics, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115.
Department of Biomedical Informatics, Harvard Medical School, 25 Shattuck St, Boston, MA 02115.
Mil Med. 2020 Aug 14;185(7-8):e1016-e1023. doi: 10.1093/milmed/usaa129.
Deployment-limiting medical conditions are the primary reason why service members are not medically ready. Service-specific standards guide clinicians in what conditions are restrictive for duty, fitness, and/or deployment requirements. The Air Force (AF) codifies most standards in the Medical Standards Directory (MSD). Providers manually search this document, among others, to determine if any standards are violated, a tedious and error-prone process. Digitized, standards-based decision-support tools for providers would ease this workflow. This study digitized and mapped all AF occupations to MSD occupational classes and all MSD standards to diagnosis codes and created and validated a readiness decision support system (RDSS) around this mapping.
A medical coder mapped all standards within the May 2018 v2 MSD to 2018 International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) codes. For the publication of new MSDs, we devised an automated update process using Amazon Web Service's Comprehend Medical and the Unified Medical Language System's Metathesaurus. We mapped Air Force Specialty Codes to occupational classes using the MSD and AF classification directories. We uploaded this mapping to a cloud-based MySQL (v5.7.23) database and built a web application to interface with it using R (v3.5+). For validation, we compared the RDSS to the record review of two subject-matter experts (SMEs) for 200 outpatient encounters in calendar year 2018. We performed four separate analyses: (1) SME vs. RDSS for any restriction; (2) SME interrater reliability for any restriction; (3) SME vs. RDSS for specific restriction(s); and (4) SME interrater reliability for categorical restriction(s). This study was approved as "Not Human Subjects Research" by the Air Force Research Laboratory (FWR20190100N) and Boston Children's Hospital (IRB-P00031397) review boards.
Of the 709 current medical standards in the September 2019 MSD, 631 (89.0%) were mapped to ICD-10-CM codes. These 631 standards mapped to 42,810 unique ICD codes (59.5% of all active 2019 codes) and covered 72.3% (7,823/10,821) of the diagnoses listed on AF profiles and 92.8% of profile days (90.7/97.8 million) between February 1, 2007 and January 31, 2017. The RDSS identified diagnoses warranting any restrictions with 90.8% and 90.0% sensitivity compared to SME A and B. For specific restrictions, the sensitivity was 85.0% and 44.8%. The specificity was poor for any restrictions (20.5%-43.4%) and near perfect for specific restrictions (99.5+%). The interrater reliability between SMEs for all comparisons ranged from minimal to moderate (κ = 0.33-0.61).
This study demonstrated key pilot steps to digitizing and mapping AF readiness standards to existing terminologies. The RDSS showed one potential application. The sensitivity between the SMEs and RDSS demonstrated its viability as a screening tool with further refinement and study. However, its performance was not evenly distributed by special duty status or for the indication of specific restrictions. With machine consumable medical standards integrated within existing digital infrastructure and clinical workflows, RDSSs would remove a significant administrative burden from providers and likely improve the accuracy of readiness metrics.
限制部署的医疗条件是导致军人无法达到医学准备状态的主要原因。特定于服务的标准指导临床医生评估哪些条件对职责、健康状况和/或部署要求具有限制性。空军(AF)将大多数标准编入医疗标准目录(MSD)。医务人员手动搜索该文件和其他文件,以确定是否违反任何标准,这是一个繁琐且容易出错的过程。为医务人员提供数字化、基于标准的决策支持工具将简化此工作流程。本研究对所有空军职业进行了数字化,并将其映射到 MSD 职业类别,将所有 MSD 标准映射到诊断代码,并围绕该映射创建和验证了一个准备状态决策支持系统(RDSS)。
一名医疗编码员将 2018 年 5 月版 2 的 MSD 中的所有标准映射到 2018 年国际疾病分类,第十次修订版,临床修正版(ICD-10-CM)代码。对于新 MSD 的发布,我们使用亚马逊网络服务的 Comprehend Medical 和统一医学语言系统的 Metathesaurus 设计了一个自动更新过程。我们使用 MSD 和 AF 分类目录将空军专业代码映射到职业类别。我们将此映射上传到基于云的 MySQL(v5.7.23)数据库,并使用 R(v3.5+)构建了一个与数据库交互的 Web 应用程序。为了验证,我们将 RDSS 与两位主题专家(SMEs)对 2018 年门诊就诊的 200 例的记录进行了比较。我们进行了四项独立分析:(1)SME 与 RDSS 对任何限制的比较;(2)SME 对任何限制的组内信度比较;(3)SME 与 RDSS 对特定限制的比较;(4)SME 对分类限制的组内信度比较。这项研究被空军研究实验室(FWR20190100N)和波士顿儿童医院(IRB-P00031397)审查委员会批准为“非人类对象研究”。
在 2019 年 9 月的 MSD 中,709 项现行医疗标准中,有 631 项(89.0%)被映射到 ICD-10-CM 代码。这 631 项标准映射到 42810 个唯一的 ICD 代码(2019 年所有活动代码的 59.5%),涵盖了空军档案中列出的诊断的 72.3%(7823/10821)和 2007 年 2 月 1 日至 2017 年 1 月 31 日期间档案日的 92.8%(90.7/97.8 亿)。RDSS 确定了需要任何限制的诊断,与 SME A 和 B 相比,其敏感性分别为 90.8%和 90.0%。对于特定限制,敏感性分别为 85.0%和 44.8%。任何限制的特异性较差(20.5%-43.4%),而特定限制的特异性接近完美(99.5%以上)。SME 之间所有比较的组内信度范围从最小到中度(κ=0.33-0.61)。
本研究展示了将空军准备状态标准数字化并映射到现有术语的关键试点步骤。RDSS 展示了一个潜在的应用。SME 和 RDSS 之间的敏感性表明,它作为一种筛选工具具有一定的可行性,需要进一步改进和研究。然而,其性能在特殊职责状态或特定限制的指示方面分布不均。通过将可由机器使用的医疗标准集成到现有数字基础设施和临床工作流程中,RDSS 将减轻医务人员的大量行政负担,并可能提高准备状态指标的准确性。