Gulliver Laboratory, ESPCI Paris-Université PSL, 10 rue Vauquelin, 75005 Paris, France.
ACS Sens. 2020 Aug 28;5(8):2430-2437. doi: 10.1021/acssensors.0c00593. Epub 2020 Jul 25.
Ubiquitous post-transcriptional regulators in eukaryotes, microRNAs are currently emerging as promising biomarkers of physiological and pathological processes. Multiplex and digital detection of microRNAs represents a major challenge toward the use of microRNA signatures in clinical settings. The classical reverse transcription polymerase chain reaction quantification approach has important limitations because of the need for thermocycling and a reverse transcription step. Simpler, isothermal alternatives have been proposed, yet none could be adapted in both a digital and multiplex format. This is either because of a lack of sensitivity that forbids single molecule detection or molecular cross-talk reactions that are responsible for nonspecific amplification. Building on an ultrasensitive isothermal amplification mechanism, we present a strategy to suppress cross-talk reactions, allowing for robust isothermal and multiplex detection of microRNA targets. Our approach relies on target-specific DNA circuits interconnected with DNA-encoded inhibitors that repress nonspecific signal amplification. We demonstrate the one-step, isothermal, digital, and simultaneous quantification of various pairs of important microRNA targets.
真核生物中普遍存在的转录后调控因子——microRNAs,目前正作为生理和病理过程有前途的生物标志物而崭露头角。microRNA 特征在临床环境中的应用面临着多重和数字检测的重大挑战。由于需要热循环和逆转录步骤,经典的逆转录聚合酶链反应定量方法存在重要的局限性。已经提出了更简单的等温替代方法,但没有一种方法可以以数字和多重格式进行适应。这要么是因为缺乏能够禁止单分子检测的灵敏度,要么是因为分子交叉反应会导致非特异性扩增。基于超灵敏等温扩增机制,我们提出了一种抑制交叉反应的策略,从而能够稳健地进行 microRNA 靶标的等温多重复检测。我们的方法依赖于与 DNA 编码抑制剂相互连接的靶特异性 DNA 电路,这些抑制剂抑制非特异性信号扩增。我们证明了各种重要 microRNA 靶标的一步、等温、数字和同时定量。