Takiguchi Sotaro, Takeuchi Nanami, Shenshin Vasily, Gines Guillaume, Genot Anthony J, Nivala Jeff, Rondelez Yannick, Kawano Ryuji
Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan.
Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France.
Chem Soc Rev. 2025 Jan 2;54(1):8-32. doi: 10.1039/d3cs00396e.
DNA computing represents a subfield of molecular computing with the potential to become a significant area of next-generation computation due to the high programmability inherent in the sequence-dependent molecular behaviour of DNA. Recent studies in DNA computing have extended from mathematical informatics to biomedical applications, with a particular focus on diagnostics that exploit the biocompatibility of DNA molecules. The output of DNA computing devices is encoded in nucleic acid molecules, which must then be decoded into human-recognizable signals for practical applications. Nanopore technology, which utilizes an electrical and label-free decoding approach, provides a unique platform to bridge DNA and electronic computing for practical use. In this tutorial review, we summarise the fundamental knowledge, technologies, and methodologies of DNA computing (logic gates, circuits, neural networks, and non-DNA input circuity). We then focus on nanopore-based decoding, and highlight recent advances in medical diagnostics targeting microRNAs as biomarkers. Finally, we conclude with the potential and challenges for the practical implementation of these techniques. We hope that this tutorial will provide a comprehensive insight and enable the general reader to grasp the fundamental principles and diverse applications of DNA computing and nanopore decoding, and will inspire a wide range of scientists to explore and push the boundaries of these technologies.
DNA计算是分子计算的一个子领域,由于DNA序列依赖性分子行为所固有的高可编程性,它有潜力成为下一代计算的一个重要领域。最近在DNA计算方面的研究已经从数学信息学扩展到生物医学应用,特别关注利用DNA分子生物相容性的诊断方法。DNA计算设备的输出编码在核酸分子中,然后必须将其解码为人可识别的信号以用于实际应用。纳米孔技术采用无标记的电学解码方法,为将DNA与电子计算实际结合提供了一个独特的平台。在这篇教程综述中,我们总结了DNA计算(逻辑门、电路、神经网络和非DNA输入电路)的基础知识、技术和方法。然后我们聚焦于基于纳米孔的解码,并突出了以微小RNA作为生物标志物的医学诊断方面的最新进展。最后,我们总结了这些技术实际应用的潜力和挑战。我们希望本教程能提供全面的见解,使普通读者能够掌握DNA计算和纳米孔解码的基本原理及多样应用,并激励众多科学家探索并拓展这些技术的边界。