Manney Gloria L, Hegglin Michaela I, Lawrence Zachary D, Wargan Krzysztof, Millán Luis F, Schwartz Michael J, Santee Michelle L, Lambert Alyn, Pawson Steven, Knosp Brian W, Fuller Ryan A, Daffer William H
NorthWest Research Associates, Socorro, NM USA.
New Mexico Institute of Mining and Technology, Socorro, NM USA.
Atmos Chem Phys. 2017 Sep 30;17(18):11541-11566. doi: 10.5194/acp-17-11541-2017. Epub 2017 Sep 27.
The representation of upper tropospheric/lower stratospheric (UTLS) jet and tropopause characteristics is compared in five modern high-resolution reanalyses for 1980 through 2014. Climatologies of upper tropospheric jet, subvortex jet (the lowermost part of the stratospheric vortex), and multiple tropopause frequency distributions in MERRA (Modern Era Retrospective Analysis for Research and Applications), ERA-I (the ECMWF interim reanalysis), JRA-55 (the Japanese 55-year Reanalysis), and CFSR (the Climate Forecast System Reanalysis) are compared with those in MERRA-2. Differences between alternate products from individual reanalysis systems are assessed; in particular, a comparison of CFSR data on model and pressure levels highlights the importance of vertical grid spacing. Most of the differences in distributions of UTLS jets and multiple tropopauses are consistent with the differences in assimilation model grids and resolution: For example, ERA-I (with coarsest native horizontal resolution) typically shows a significant low bias in upper tropospheric jets with respect to MERRA-2, and JRA-55 a more modest one, while CFSR (with finest native horizontal resolution) shows a high bias with respect to MERRA-2 in both upper tropospheric jets and multiple tropopauses. Vertical temperature structure and grid spacing are especially important for multiple tropopause characterization. Substantial differences between MERRA and MERRA-2 are seen in mid- to high-latitude southern hemisphere winter upper tropospheric jets and multiple tropopauses, and in the upper tropospheric jets associated with tropical circulations during the solstice seasons; some of the largest differences from the other reanalyses are seen in the same times and places. Very good qualitative agreement among the reanalyses is seen between the large scale climatological features in UTLS jet and multiple tropopause distributions. Quantitative differences may, however, have important consequences for transport and variability studies. Our results highlight the importance of considering reanalyses differences in UTLS studies, especially in relation to resolution and model grids; this is particularly critical when using high-resolution reanalyses as an observational reference for evaluating global chemistry climate models.
对1980年至2014年期间五个现代高分辨率再分析资料中对流层上部/平流层下部(UTLS)急流和对流层顶特征的表现进行了比较。将现代气候学回顾性分析与应用(MERRA)、欧洲中期天气预报中心临时再分析(ERA-I)、日本55年再分析(JRA-55)和气候预报系统再分析(CFSR)中对流层上部急流、次涡旋急流(平流层涡旋的最下部)以及多个对流层顶频率分布的气候学特征与MERRA-2中的进行了比较。评估了各个再分析系统替代产品之间的差异;特别是,对CFSR在模式和气压层上的数据进行比较,突出了垂直网格间距的重要性。UTLS急流和多个对流层顶分布的大多数差异与同化模式网格和分辨率的差异一致:例如,ERA-I(原生水平分辨率最粗)相对于MERRA-2,对流层上部急流通常显示出显著的低偏差,JRA-55的偏差较小,而CFSR(原生水平分辨率最细)在对流层上部急流和多个对流层顶方面相对于MERRA-2都显示出高偏差。垂直温度结构和网格间距对于多个对流层顶的特征描述尤为重要。在中高纬度南半球冬季对流层上部急流和多个对流层顶以及至日季节与热带环流相关的对流层上部急流中,MERRA和MERRA-2之间存在显著差异;在相同的时间和地点可以看到一些与其他再分析相比最大的差异。在UTLS急流和多个对流层顶分布的大尺度气候特征方面,再分析之间有非常好的定性一致性。然而,定量差异可能对传输和变率研究产生重要影响。我们的结果突出了在UTLS研究中考虑再分析差异的重要性,特别是与分辨率和模式网格相关的差异;当使用高分辨率再分析作为评估全球化学气候模式的观测参考时,这一点尤为关键。