Suppr超能文献

美国国家航空航天局(NASA)的现代-era回顾性分析研究与应用(MERRA-2)再分析中臭氧场的评估。

Evaluation of the Ozone Fields in NASA's MERRA-2 Reanalysis.

作者信息

Wargan Krzysztof, Labow Gordon, Frith Stacey, Pawson Steven, Livesey Nathaniel, Partyka Gary

机构信息

Global Modeling and Assimilation Office, Code 610.1, NASA Goddard Space Flight Center, Greenbelt, MD.

Science Systems and Applications Inc., Lanham, MD.

出版信息

J Clim. 2017 Apr;30(No 8):2961-2988. doi: 10.1175/JCLI-D-16-0699.1. Epub 2017 Apr 4.

Abstract

We describe and assess the quality of the assimilated ozone product from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) produced at NASA's Global Modeling and Assimilation Office (GMAO) spanning the time period from 1980 to present. MERRA-2 assimilates partial column ozone retrievals from a series of Solar Backscatter Ultraviolet (SBUV) radiometers on NASA and NOAA spacecraft between January 1980 and September 2004; starting in October 2004 retrieved ozone profiles from the Microwave Limb Sounder (MLS) and total column ozone from the Ozone Monitoring Instrument on NASA's EOS Aura satellite are assimilated. We compare the MERRA-2 ozone with independent satellite and ozonesonde data focusing on the representation of the spatial and temporal variability of stratospheric and upper tropospheric ozone and on implications of the change in the observing system from SBUV to EOS Aura. The comparisons show agreement within 10 % (standard deviation of the difference) between MERRA-2 profiles and independent satellite data in most of the stratosphere. The agreement improves after 2004 when EOS Aura data are assimilated. The standard deviation of the differences between the lower stratospheric and upper tropospheric MERRA-2 ozone and ozonesondes is 11.2 % and 24.5 %, respectively, with correlations of 0.8 and above, indicative of a realistic representation of the near-tropopause ozone variability in MERRA-2. The agreement improves significantly in the EOS Aura period, however MERRA-2 is biased low in the upper troposphere with respect to the ozonesondes. Caution is recommended when using MERRA-2 ozone for decadal changes and trend studies.

摘要

我们描述并评估了美国国家航空航天局(NASA)全球建模与同化办公室(GMAO)制作的第二代现代时代回顾性分析研究与应用(MERRA - 2)同化臭氧产品的质量,该产品涵盖了1980年至今的时间段。MERRA - 2同化了1980年1月至2004年9月期间NASA和NOAA航天器上一系列太阳背散射紫外线(SBUV)辐射计的部分柱臭氧反演数据;从2004年10月开始,同化了微波临边探测仪(MLS)反演的臭氧廓线以及NASA的EOS Aura卫星上臭氧监测仪器反演的总柱臭氧数据。我们将MERRA - 2臭氧数据与独立的卫星和探空仪数据进行比较,重点关注平流层和对流层上层臭氧的时空变率表示,以及观测系统从SBUV到EOS Aura的变化所带来的影响。比较结果表明,在平流层的大部分区域,MERRA - 2廓线与独立卫星数据之间的差异在10%以内(差异的标准差)。在2004年同化EOS Aura数据后,一致性有所提高。MERRA - 2在平流层下部和对流层上部的臭氧与探空仪数据之间差异的标准差分别为11.2%和24.5%,相关性在0.8及以上,这表明MERRA - 2对对流层顶附近臭氧变率的表示较为真实。在EOS Aura时期,一致性显著提高,然而,相对于探空仪数据,MERRA - 2在对流层上部存在偏低偏差。在使用MERRA - 2臭氧数据进行年代际变化和趋势研究时,建议谨慎使用。

相似文献

1
Evaluation of the Ozone Fields in NASA's MERRA-2 Reanalysis.
J Clim. 2017 Apr;30(No 8):2961-2988. doi: 10.1175/JCLI-D-16-0699.1. Epub 2017 Apr 4.
2
The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2).
J Clim. 2017 Jun 20;Volume 30(Iss 13):5419-5454. doi: 10.1175/JCLI-D-16-0758.1.
3
Stratospheric intrusion-influenced ozone air quality exceedances investigated in the NASA MERRA-2 Reanalysis.
Geophys Res Lett. 2017 Sep 7;44(20):10691-10701. doi: 10.1002/2017gl074532. Epub 2017 Oct 28.
4
Assessment of upper tropospheric and stratospheric water vapor and ozone in reanalyses as part of S-RIP.
Atmos Chem Phys. 2017 Oct;17(20):12743-12778. doi: 10.5194/acp-17-12743-2017. Epub 2017 Oct 26.
5
The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation and Case Studies.
J Clim. 2017 Sep 1;30(17):6851-6872. doi: 10.1175/jcli-d-16-0613.1. Epub 2017 Jul 27.
6
Structure and Dynamics of the Quasi-Biennial Oscillation in MERRA-2.
J Clim. 2016 Jul;29(No14):5339-5354. doi: 10.1175/JCLI-D-15-0809.1. Epub 2016 Jul 7.
7
Reanalysis comparisons of upper tropospheric/lower stratospheric jets and multiple tropopauses.
Atmos Chem Phys. 2017 Sep 30;17(18):11541-11566. doi: 10.5194/acp-17-11541-2017. Epub 2017 Sep 27.
8
An ozonesonde evaluation of spaceborne observations in the Andean tropics.
Sci Rep. 2022 Sep 24;12(1):15942. doi: 10.1038/s41598-022-20303-7.
9
Origins of tropospheric ozone interannual variation (IAV) over Réunion: A model investigation.
J Geophys Res Atmos. 2016 Jan 16;121(1):521-537. doi: 10.1002/2015JD023981. Epub 2015 Dec 12.

引用本文的文献

1
Long term temporal trends in synoptic-scale weather conditions favoring significant tornado occurrence over the central United States.
PLoS One. 2023 Feb 22;18(2):e0281312. doi: 10.1371/journal.pone.0281312. eCollection 2023.
2
NASA Satellite Measurements Show Global-Scale Reductions in Free Tropospheric Ozone in 2020 and Again in 2021 During COVID-19.
Geophys Res Lett. 2022 Aug 16;49(15):e2022GL098712. doi: 10.1029/2022GL098712. Epub 2022 Aug 12.
3
An ozonesonde evaluation of spaceborne observations in the Andean tropics.
Sci Rep. 2022 Sep 24;12(1):15942. doi: 10.1038/s41598-022-20303-7.
4
NASA GEOS Composition Forecast Modeling System GEOS-CF v1.0: Stratospheric Composition.
J Adv Model Earth Syst. 2022 Jun;14(6):e2021MS002852. doi: 10.1029/2021MS002852. Epub 2022 Jun 7.
5
Satellite-Based Long-Term Spatiotemporal Patterns of Surface Ozone Concentrations in China: 2005-2019.
Environ Health Perspect. 2022 Feb;130(2):27004. doi: 10.1289/EHP9406. Epub 2022 Feb 9.
6
Evaluation of CMIP6 GCMs for simulations of temperature over Thailand and nearby areas in the early 21st century.
Heliyon. 2021 Oct 27;7(11):e08263. doi: 10.1016/j.heliyon.2021.e08263. eCollection 2021 Nov.
8
Natural gas shortages during the "coal-to-gas" transition in China have caused a large redistribution of air pollution in winter 2017.
Proc Natl Acad Sci U S A. 2020 Dec 8;117(49):31018-31025. doi: 10.1073/pnas.2007513117. Epub 2020 Nov 23.
9
Ozone structure in Caribbean hurricanes.
Heliyon. 2020 Nov 9;6(11):e05366. doi: 10.1016/j.heliyon.2020.e05366. eCollection 2020 Nov.
10
Characterizing Global Ozonesonde Profile Variability from Surface to the UT/LS with a Clustering Technique and MERRA-2 Reanalysis.
J Geophys Res Atmos. 2018 Jun 16;123(11):6213-6229. doi: 10.1029/2018jd028465. Epub 2018 May 4.

本文引用的文献

1
Ground-based assessment of the bias and long-term stability of fourteen limb and occultation ozone profile data records.
Atmos Meas Tech. 2016;9(6):2497-2534. doi: 10.5194/amtd-8-6661-2015. Epub 2016 Jun 8.
2
Maintaining Atmospheric Mass and Water Balance in Reanalyses.
Q J R Meteorol Soc. 2016 Apr;142(697):1565-1573. doi: 10.1002/qj.2763. Epub 2016 Feb 8.
3
Structure and Dynamics of the Quasi-Biennial Oscillation in MERRA-2.
J Clim. 2016 Jul;29(No14):5339-5354. doi: 10.1175/JCLI-D-15-0809.1. Epub 2016 Jul 7.
4
Validation of Aura Microwave Limb Sounder stratospheric water vapor measurements by the NOAA frost point hygrometer.
J Geophys Res Atmos. 2014 Feb 16;119(3):1612-1625. doi: 10.1002/2013JD020757. Epub 2014 Feb 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验