Suppr超能文献

将基因组学见解转化为心血管医学:CRISPR-Cas9 的机遇与挑战。

Translating genomic insights into cardiovascular medicine: Opportunities and challenges of CRISPR-Cas9.

机构信息

Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Dr, Suite 1347, Stanford, CA 94305-5515, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.

Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Dr, Suite 1347, Stanford, CA 94305-5515, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.

出版信息

Trends Cardiovasc Med. 2021 Aug;31(6):341-348. doi: 10.1016/j.tcm.2020.06.008. Epub 2020 Jun 27.

Abstract

The growing appreciation of human genetics and genomics in cardiovascular disease (CVD) accompanied by the technological breakthroughs in genome editing, particularly the CRISPR-Cas9 technologies, has presented an unprecedented opportunity to explore the application of genome editing in cardiovascular medicine. The ever-growing genome editing toolbox includes an assortment of CRISPR-Cas systems with increasing efficiency, precision, flexibility, and targeting capacity. Over the past decade, the advent of large-scale genotyping technologies and genome-wide association studies (GWAS) has provided numerous genotype-phenotype associations for diseases with complex traits. Notably, a growing number of loss-of-function mutations have been associated with favorable CVD risk-factor profiles that may confer protection. Combining the newly gained insights of human genetics with recent breakthrough technologies, such as the CRISPR-Cas9 technologies, holds great promise in elucidating novel disease mechanisms and transforming genes into medicines. Nonetheless, translating genetic insights into novel therapeuties remains challenging. Applications of "in body" genome editing for CVD treatment and engineering cardioprotection remain mostly theoretical. Here we highlight the recent advances of the CRISPR-based genome editing toolbox and discuss the potential and challenges of CRISPR-based technologies for translating GWAS findings into genomic medicines.

摘要

人类遗传学和基因组学在心血管疾病(CVD)中的应用日益受到重视,同时基因组编辑技术也取得了突破性进展,特别是 CRISPR-Cas9 技术,这为探索基因组编辑在心血管医学中的应用提供了前所未有的机会。不断增长的基因组编辑工具包包括一系列具有越来越高效率、精度、灵活性和靶向能力的 CRISPR-Cas 系统。在过去的十年中,大规模基因分型技术和全基因组关联研究(GWAS)的出现为具有复杂特征的疾病提供了许多基因型-表型关联。值得注意的是,越来越多的功能丧失突变与有利的 CVD 风险因素谱相关,可能提供保护。将人类遗传学的新见解与 CRISPR-Cas9 等新兴突破性技术相结合,有望阐明新的疾病机制并将基因转化为药物。然而,将遗传见解转化为新的治疗方法仍然具有挑战性。将“体内”基因组编辑应用于 CVD 治疗和心脏保护工程的应用在很大程度上仍处于理论阶段。本文重点介绍了基于 CRISPR 的基因组编辑工具包的最新进展,并讨论了基于 CRISPR 的技术将 GWAS 发现转化为基因组医学的潜力和挑战。

相似文献

1
Translating genomic insights into cardiovascular medicine: Opportunities and challenges of CRISPR-Cas9.
Trends Cardiovasc Med. 2021 Aug;31(6):341-348. doi: 10.1016/j.tcm.2020.06.008. Epub 2020 Jun 27.
2
CRISPR/Cas9 gene-editing strategies in cardiovascular cells.
Cardiovasc Res. 2020 Apr 1;116(5):894-907. doi: 10.1093/cvr/cvz250.
3
Harnessing CRISPR/Cas9 technology in cardiovascular disease.
Trends Cardiovasc Med. 2020 Feb;30(2):93-101. doi: 10.1016/j.tcm.2019.03.005. Epub 2019 Mar 26.
5
CRISPR/Cas gene therapy.
J Cell Physiol. 2021 Apr;236(4):2459-2481. doi: 10.1002/jcp.30064. Epub 2020 Sep 22.
6
Implications of CRISPR-Cas9 Genome Editing Methods in Atherosclerotic Cardiovascular Diseases.
Curr Probl Cardiol. 2023 May;48(5):101603. doi: 10.1016/j.cpcardiol.2023.101603. Epub 2023 Jan 20.
7
8
Development and application of CRISPR/Cas9 technologies in genomic editing.
Hum Mol Genet. 2018 Aug 1;27(R2):R79-R88. doi: 10.1093/hmg/ddy120.
10
Big Data and Genome Editing Technology: A New Paradigm of Cardiovascular Genomics.
Curr Cardiol Rev. 2017;13(4):301-304. doi: 10.2174/1573403X13666170804152432.

引用本文的文献

1
Planar Cell Polarity Signaling: Coordinated Crosstalk for Cell Orientation.
J Dev Biol. 2024 Apr 29;12(2):12. doi: 10.3390/jdb12020012.
2
Leverage of nuclease-deficient CasX for preventing pathological angiogenesis.
Mol Ther Nucleic Acids. 2023 Aug 6;33:738-748. doi: 10.1016/j.omtn.2023.08.001. eCollection 2023 Sep 12.
3
Regeneration of the heart: from molecular mechanisms to clinical therapeutics.
Mil Med Res. 2023 Apr 26;10(1):18. doi: 10.1186/s40779-023-00452-0.
4
Applications of CRISPR-Cas9 as an Advanced Genome Editing System in Life Sciences.
BioTech (Basel). 2021 Jul 6;10(3):14. doi: 10.3390/biotech10030014.

本文引用的文献

1
Polygenic Scores to Assess Atherosclerotic Cardiovascular Disease Risk: Clinical Perspectives and Basic Implications.
Circ Res. 2020 Apr 24;126(9):1159-1177. doi: 10.1161/CIRCRESAHA.120.315928. Epub 2020 Apr 23.
2
Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants.
Science. 2020 Apr 17;368(6488):290-296. doi: 10.1126/science.aba8853. Epub 2020 Mar 26.
3
Potent CRISPR-Cas9 inhibitors from genomes.
Proc Natl Acad Sci U S A. 2020 Mar 24;117(12):6531-6539. doi: 10.1073/pnas.1917668117. Epub 2020 Mar 10.
4
Continuous evolution of SpCas9 variants compatible with non-G PAMs.
Nat Biotechnol. 2020 Apr;38(4):471-481. doi: 10.1038/s41587-020-0412-8. Epub 2020 Feb 10.
5
Step aside CRISPR, RNA editing is taking off.
Nature. 2020 Feb;578(7793):24-27. doi: 10.1038/d41586-020-00272-5.
6
Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses.
Nat Biomed Eng. 2020 Jan;4(1):97-110. doi: 10.1038/s41551-019-0501-5. Epub 2020 Jan 14.
7
CRISPR tool modifies genes precisely by copying RNA into the genome.
Nature. 2019 Dec;576(7785):48-49. doi: 10.1038/d41586-019-03392-9.
8
Long-range enhancer-promoter interactions prevent predisposition to atrial fibrillation.
Proc Natl Acad Sci U S A. 2019 Nov 5;116(45):22692-22698. doi: 10.1073/pnas.1907418116. Epub 2019 Oct 21.
9
Search-and-replace genome editing without double-strand breaks or donor DNA.
Nature. 2019 Dec;576(7785):149-157. doi: 10.1038/s41586-019-1711-4. Epub 2019 Oct 21.
10
CRISPR-Cas9 gene editing for patients with haemoglobinopathies.
Lancet Haematol. 2019 Sep;6(9):e438. doi: 10.1016/S2352-3026(19)30169-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验