Suppr超能文献

通过对颞部面部颜色变化的模式分析实现糖尿病并发症的无创检测。

Non-invasive detection of diabetic complications via pattern analysis of temporal facial colour variations.

作者信息

Majtner Tomáš, Nadimi Esmaeil S, Yderstræde Knud B, Blanes-Vidal Victoria

机构信息

Group of Applied AI and Data Science, The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense, Denmark.

Group of Applied AI and Data Science, The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense, Denmark.

出版信息

Comput Methods Programs Biomed. 2020 Nov;196:105619. doi: 10.1016/j.cmpb.2020.105619. Epub 2020 Jun 20.

Abstract

BACKGROUND AND OBJECTIVE

Diabetes mellitus is a common disorder amounting to 400 million patients worldwide. It is often accompanied by a number of complications, including neuropathy, nephropathy, and cardiovascular diseases. For example, peripheral neuropathy is present among 20-30% of diabetics before the diagnosis is substantiated. For this reason, a reliable detection method for diabetic complications is crucial and attracts a lot of research attention.

METHODS

In this paper, we introduce a non-invasive detection framework for patients with diabetic complications that only requires short video recordings of faces from a standard commercial camera. We employed multiple image processing and pattern recognition techniques to process video frames, extract relevant information, and predict the health status. To evaluate our framework, we collected a dataset of 114 video files from diabetic patients, who were diagnosed with diabetes for years and 60 video files from the control group. Extracted features from videos were tested using two conceptually different classifiers.

RESULTS

We found that our proposed framework correctly identifies patients with diabetic complications with 92.86% accuracy, 100% sensitivity, and 80% specificity.

CONCLUSIONS

Our study brings a novel perspective on diagnosis procedures in this field. We used multiple techniques from image processing, pattern recognition, and machine learning to robustly process video frames and predict the health status of our subjects with high efficiency.

摘要

背景与目的

糖尿病是一种常见疾病,全球患者达4亿。它常伴有多种并发症,包括神经病变、肾病和心血管疾病。例如,在确诊前,20%-30%的糖尿病患者存在周围神经病变。因此,一种可靠的糖尿病并发症检测方法至关重要,吸引了大量研究关注。

方法

在本文中,我们为糖尿病并发症患者引入了一种非侵入性检测框架,该框架仅需使用标准商用摄像头对面部进行短视频录制。我们采用了多种图像处理和模式识别技术来处理视频帧、提取相关信息并预测健康状况。为评估我们的框架,我们从患有多年糖尿病的患者中收集了114个视频文件的数据集,以及从对照组收集了60个视频文件。使用两种概念上不同的分类器对从视频中提取的特征进行测试。

结果

我们发现,我们提出的框架能够以92.86%的准确率、100%的灵敏度和80%的特异性正确识别糖尿病并发症患者。

结论

我们的研究为该领域的诊断程序带来了新的视角。我们使用了来自图像处理、模式识别和机器学习的多种技术,对视频帧进行稳健处理,并高效地预测了受试者的健康状况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验