Suppr超能文献

使用面部特定区域对各种纹理特征提取器进行广泛分析以检测糖尿病。

An extensive analysis of various texture feature extractors to detect Diabetes Mellitus using facial specific regions.

作者信息

Shu Ting, Zhang Bob, Yan Tang Yuan

机构信息

Department of Computer and Information Science, Avenida da Universidade, University of Macau, Taipa, Macau, China.

出版信息

Comput Biol Med. 2017 Apr 1;83:69-83. doi: 10.1016/j.compbiomed.2017.02.005. Epub 2017 Feb 22.

Abstract

INTRODUCTION

Researchers have recently discovered that Diabetes Mellitus can be detected through non-invasive computerized method. However, the focus has been on facial block color features. In this paper, we extensively study the effects of texture features extracted from facial specific regions at detecting Diabetes Mellitus using eight texture extractors.

MATERIALS AND METHODS

The eight methods are from four texture feature families: (1) statistical texture feature family: Image Gray-scale Histogram, Gray-level Co-occurance Matrix, and Local Binary Pattern, (2) structural texture feature family: Voronoi Tessellation, (3) signal processing based texture feature family: Gaussian, Steerable, and Gabor filters, and (4) model based texture feature family: Markov Random Field. In order to determine the most appropriate extractor with optimal parameter(s), various parameter(s) of each extractor are experimented. For each extractor, the same dataset (284 Diabetes Mellitus and 231 Healthy samples), classifiers (k-Nearest Neighbors and Support Vector Machines), and validation method (10-fold cross validation) are used.

RESULTS

According to the experiments, the first and third families achieved a better outcome at detecting Diabetes Mellitus than the other two.

CONCLUSIONS

The best texture feature extractor for Diabetes Mellitus detection is the Image Gray-scale Histogram with bin number=256, obtaining an accuracy of 99.02%, a sensitivity of 99.64%, and a specificity of 98.26% by using SVM.

摘要

引言

研究人员最近发现,可以通过非侵入性计算机方法检测糖尿病。然而,重点一直放在面部块颜色特征上。在本文中,我们广泛研究了使用八种纹理提取器从面部特定区域提取的纹理特征在检测糖尿病方面的效果。

材料与方法

这八种方法来自四个纹理特征家族:(1)统计纹理特征家族:图像灰度直方图、灰度共生矩阵和局部二值模式;(2)结构纹理特征家族:Voronoi镶嵌;(3)基于信号处理的纹理特征家族:高斯滤波器、可控滤波器和伽柏滤波器;(4)基于模型的纹理特征家族:马尔可夫随机场。为了确定具有最佳参数的最合适提取器,对每个提取器的各种参数进行了实验。对于每个提取器,使用相同的数据集(284个糖尿病样本和231个健康样本)、分类器(k近邻和支持向量机)以及验证方法(10折交叉验证)。

结果

根据实验,第一和第三个家族在检测糖尿病方面比其他两个家族取得了更好的结果。

结论

用于糖尿病检测的最佳纹理特征提取器是箱数为256的图像灰度直方图,使用支持向量机时准确率为99.02%,灵敏度为99.64%,特异性为98.26%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验