Suppr超能文献

邮寄提醒以提高流感疫苗接种率。

Reminder sent by mail to increase adherence to influenza vaccination.

机构信息

Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Proyecto Epistemonikos, Santiago, Chile.

Proyecto Epistemonikos, Santiago, Chile; Departamento de Medicina Familiar, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile. Email:

出版信息

Medwave. 2020 Jun 18;20(5):e7747. doi: 10.5867/medwave.2020.05.7746.

Abstract

INTRODUCTION

Different interventions have been proposed to improve influenza vaccine coverage. The use of reminders, through letters, phone calls, pamphlets or technological applications, among others, has stood out among the different alternatives to increase adherence to vaccination. However, its effectiveness is not clear. In this summary, the first of a series of evaluation of reminders will address the use of a reminder sent by mail.

METHODS

We searched in Epistemonikos, the largest database of systematic reviews in health, which is maintained by screening multiple information sources, including MEDLINE, EMBASE, Cochrane, among others. We extracted data from the identified reviews, analyzed the data from the primary studies, performed a meta-analysis and prepared a summary table of the results using the GRADE method.

RESULTS AND CONCLUSIONS

We identified eight systematic reviews that included 35 primary studies, of which 32 correspond to randomized trials. We concluded that a reminder sent by mail, probably increase adherence to influenza vaccination in all age groups (adult population, over 60 an under 18).

摘要

简介

为了提高流感疫苗的接种率,已经提出了不同的干预措施。在所有增加接种依从性的替代方案中,通过信件、电话、小册子或技术应用等方式使用提醒措施尤为突出。然而,其效果尚不清楚。在这一系列评估提醒措施的第一篇综述中,我们将探讨通过邮寄发送提醒的使用。

方法

我们在 Epistemonikos 中进行了检索,Epistemonikos 是最大的健康系统评价数据库,通过筛选多个信息来源(包括 MEDLINE、EMBASE、Cochrane 等)进行维护。我们从确定的综述中提取数据,分析来自原始研究的数据,进行荟萃分析,并使用 GRADE 方法编制结果总结表。

结果和结论

我们确定了八项系统评价,其中包括 35 项原始研究,其中 32 项为随机试验。我们得出结论,邮寄的提醒可能会增加所有年龄段(成人、60 岁以上和 18 岁以下)的流感疫苗接种率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验