Suppr超能文献

医学数据中的局部失真隐藏算法:以CART为例的案例研究

Local Distortion Hiding Algorithm in Medical Data: A Case Study Using CART.

作者信息

Feretzakis Georgios, Kalles Dimitris, Verykios Vassilios S

机构信息

School of Science and Technology, Hellenic Open University, Patras 263 35, Greece.

出版信息

Stud Health Technol Inform. 2020 Jun 26;272:99-102. doi: 10.3233/SHTI200503.

Abstract

Data sharing has become an increasingly common process among health organizations, but any organization will most likely try to hide some sensitive patterns before sharing its data with others. Local Distortion Hiding (LDH), a recently proposed algorithm, has been evaluated only on the assumption of an opponent using the J48 (C4.5) classification algorithm. We now extend the basic approach, and we present a medical dataset hiding case study of a processed by LDH and attacked with the CART algorithm.

摘要

数据共享在卫生组织之间已成为越来越普遍的过程,但任何组织在与其他组织共享其数据之前很可能会试图隐藏一些敏感模式。局部失真隐藏(LDH)是一种最近提出的算法,目前仅在对手使用J48(C4.5)分类算法的假设下进行了评估。我们现在扩展了基本方法,并展示了一个经过LDH处理并受到CART算法攻击的医学数据集隐藏案例研究。

相似文献

2
Hiding Decision Tree Rules in Medical Data: A Case Study.
Stud Health Technol Inform. 2019 Jul 4;262:368-371. doi: 10.3233/SHTI190095.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验