Suppr超能文献

关于使用线性丢番图方程并行隐藏决策树规则

On Using Linear Diophantine Equations for in-Parallel Hiding of Decision Tree Rules.

作者信息

Feretzakis Georgios, Kalles Dimitris, Verykios Vassilios S

机构信息

School of Science and Technology, Hellenic Open University, Patras 263 35, Greece.

出版信息

Entropy (Basel). 2019 Jan 14;21(1):66. doi: 10.3390/e21010066.

Abstract

Data sharing among organizations has become an increasingly common procedure in several areas such as advertising, marketing, electronic commerce, banking, and insurance sectors. However, any organization will most likely try to keep some patterns as hidden as possible once it shares its datasets with others. This paper focuses on preserving the privacy of sensitive patterns when inducing decision trees. We adopt a record augmentation approach to hide critical classification rules in binary datasets. Such a hiding methodology is preferred over other heuristic solutions like output perturbation or cryptographic techniques, which limit the usability of the data, since the raw data itself is readily available for public use. We propose a look ahead technique using linear Diophantine equations to add the appropriate number of instances while maintaining the initial entropy of the nodes. This method can be used to hide one or more decision tree rules optimally.

摘要

组织间的数据共享在广告、营销、电子商务、银行和保险等多个领域已成为越来越普遍的做法。然而,任何组织在与其他方共享其数据集后,很可能会尽量将某些模式隐藏起来。本文重点关注在归纳决策树时保护敏感模式的隐私。我们采用记录扩充方法来隐藏二进制数据集中的关键分类规则。与输出扰动或加密技术等其他启发式解决方案相比,这种隐藏方法更受青睐,因为后两者会限制数据的可用性,而原始数据本身可随时供公众使用。我们提出一种使用线性丢番图方程的前瞻技术,在保持节点初始熵的同时添加适当数量的实例。该方法可用于最佳地隐藏一个或多个决策树规则。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e08c/7514174/06a821865800/entropy-21-00066-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验