Suppr超能文献

利用CT扫描通过深度学习对颅内出血亚型进行分类

Classification of Intracranial Hemorrhage Subtypes Using Deep Learning on CT Scans.

作者信息

Danilov Gleb, Kotik Konstantin, Negreeva Anna, Tsukanova Tatiana, Shifrin Michael, Zakharova Natalya, Batalov Artem, Pronin Igor, Potapov Alexander

机构信息

Laboratory of Biomedical Informatics and Artificial Intelligence, National Medical Research Center for Neurosurgery named after N.N. Burdenko, Moscow, Russian Federation.

Department of neuroradiology, National Medical Research Center for Neurosurgery named after N.N. Burdenko, Moscow, Russian Federation.

出版信息

Stud Health Technol Inform. 2020 Jun 26;272:370-373. doi: 10.3233/SHTI200572.

Abstract

Intracranial hemorrhage is a pathological condition that requires fast diagnosis and decision making. Recently, a neural network model for classification of different intracranial hemorrhage types was proposed by a member of our research group Konstantin Kotik as part of the machine learning competition at Kaggle. Our current pilot study aimed to test this model on real-world CT scans from patients with intracranial hemorrhage treated at N.N. Burdenko Neurosurgery Center. The deep learning model for intracranial hemorrhage classification based on ResNexT architecture showed an accuracy of detection greater than 0.81 for every subtype of hemorrhage without any tuning. We expect further improvement in the model performance.

摘要

颅内出血是一种需要快速诊断和决策的病理状况。最近,我们研究团队的成员康斯坦丁·科蒂克提出了一种用于对不同类型颅内出血进行分类的神经网络模型,该模型是作为Kaggle机器学习竞赛的一部分。我们目前的试点研究旨在对在N.N.布尔坚科神经外科中心接受治疗的颅内出血患者的真实世界CT扫描图像上测试该模型。基于ResNexT架构的颅内出血分类深度学习模型在未经任何调整的情况下,对每种出血亚型的检测准确率均大于0.81。我们预计该模型的性能会有进一步提升。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验