Suppr超能文献

一种使用混合深度神经网络检测颅内出血的高效框架。

An Efficient Framework to Detect Intracranial Hemorrhage Using Hybrid Deep Neural Networks.

作者信息

Rajagopal Manikandan, Buradagunta Suvarna, Almeshari Meshari, Alzamil Yasser, Ramalingam Rajakumar, Ravi Vinayakumar

机构信息

Department of CST, Madanapalle Institute of Technology & Science, Madanapalle 517325, India.

Department of CSE, Vignan's Foundation for Science, Technology, and Research Vadlamudi, Guntur 522213, India.

出版信息

Brain Sci. 2023 Feb 25;13(3):400. doi: 10.3390/brainsci13030400.

Abstract

Intracranial hemorrhage (ICH) is a serious medical condition that necessitates a prompt and exhaustive medical diagnosis. This paper presents a multi-label ICH classification issue with six different types of hemorrhages, namely epidural (EPD), intraparenchymal (ITP), intraventricular (ITV), subarachnoid (SBC), subdural (SBD), and Some. A patient may experience numerous hemorrhages at the same time in some situations. A CT scan of a patient's skull is used to detect and classify the type of ICH hemorrhage(s) present. First, our model determines whether there is a hemorrhage or not; if there is a hemorrhage, the model attempts to identify the type of hemorrhage(s). In this paper, we present a hybrid deep learning approach that combines convolutional neural network (CNN) and Long-Short Term Memory (LSTM) approaches (Conv-LSTM). In addition, to propose viable solutions for the problem, we used a Systematic Windowing technique with a Conv-LSTM. To ensure the efficacy of the proposed model, experiments are conducted on the RSNA dataset. The suggested model provides higher sensitivity (93.87%), specificity (96.45%), precision (95.21%), and accuracy (95.14%). In addition, the obtained F1 score results outperform existing deep neural network-based algorithms.

摘要

颅内出血(ICH)是一种严重的病症,需要迅速且全面的医学诊断。本文提出了一个多标签ICH分类问题,涉及六种不同类型的出血,即硬膜外出血(EPD)、脑实质内出血(ITP)、脑室内出血(ITV)、蛛网膜下腔出血(SBC)、硬膜下出血(SBD)以及其他类型。在某些情况下,患者可能同时出现多种出血。通过对患者颅骨进行CT扫描来检测和分类所存在的ICH出血类型。首先,我们的模型确定是否存在出血;如果存在出血,模型会尝试识别出血的类型。在本文中,我们提出了一种结合卷积神经网络(CNN)和长短期记忆网络(LSTM)方法的混合深度学习方法(Conv-LSTM)。此外,为了针对该问题提出可行的解决方案,我们使用了一种带有Conv-LSTM的系统开窗技术。为确保所提出模型的有效性,我们在RSNA数据集上进行了实验。所建议的模型具有更高的灵敏度(93.87%)、特异性(96.45%)、精确度(95.21%)和准确率(95.14%)。此外,所获得的F1分数结果优于现有的基于深度神经网络的算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8092/10046213/06590bdbb72c/brainsci-13-00400-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验