Rajagopal Manikandan, Buradagunta Suvarna, Almeshari Meshari, Alzamil Yasser, Ramalingam Rajakumar, Ravi Vinayakumar
Department of CST, Madanapalle Institute of Technology & Science, Madanapalle 517325, India.
Department of CSE, Vignan's Foundation for Science, Technology, and Research Vadlamudi, Guntur 522213, India.
Brain Sci. 2023 Feb 25;13(3):400. doi: 10.3390/brainsci13030400.
Intracranial hemorrhage (ICH) is a serious medical condition that necessitates a prompt and exhaustive medical diagnosis. This paper presents a multi-label ICH classification issue with six different types of hemorrhages, namely epidural (EPD), intraparenchymal (ITP), intraventricular (ITV), subarachnoid (SBC), subdural (SBD), and Some. A patient may experience numerous hemorrhages at the same time in some situations. A CT scan of a patient's skull is used to detect and classify the type of ICH hemorrhage(s) present. First, our model determines whether there is a hemorrhage or not; if there is a hemorrhage, the model attempts to identify the type of hemorrhage(s). In this paper, we present a hybrid deep learning approach that combines convolutional neural network (CNN) and Long-Short Term Memory (LSTM) approaches (Conv-LSTM). In addition, to propose viable solutions for the problem, we used a Systematic Windowing technique with a Conv-LSTM. To ensure the efficacy of the proposed model, experiments are conducted on the RSNA dataset. The suggested model provides higher sensitivity (93.87%), specificity (96.45%), precision (95.21%), and accuracy (95.14%). In addition, the obtained F1 score results outperform existing deep neural network-based algorithms.
颅内出血(ICH)是一种严重的病症,需要迅速且全面的医学诊断。本文提出了一个多标签ICH分类问题,涉及六种不同类型的出血,即硬膜外出血(EPD)、脑实质内出血(ITP)、脑室内出血(ITV)、蛛网膜下腔出血(SBC)、硬膜下出血(SBD)以及其他类型。在某些情况下,患者可能同时出现多种出血。通过对患者颅骨进行CT扫描来检测和分类所存在的ICH出血类型。首先,我们的模型确定是否存在出血;如果存在出血,模型会尝试识别出血的类型。在本文中,我们提出了一种结合卷积神经网络(CNN)和长短期记忆网络(LSTM)方法的混合深度学习方法(Conv-LSTM)。此外,为了针对该问题提出可行的解决方案,我们使用了一种带有Conv-LSTM的系统开窗技术。为确保所提出模型的有效性,我们在RSNA数据集上进行了实验。所建议的模型具有更高的灵敏度(93.87%)、特异性(96.45%)、精确度(95.21%)和准确率(95.14%)。此外,所获得的F1分数结果优于现有的基于深度神经网络的算法。