Geography Department, Humboldt-Universität zu Berlin, 10117 Berlin, Germany.
Faculty of Energy Engineering, Aswan University, 81528 Aswan, Egypt.
Int J Environ Res Public Health. 2020 Jun 28;17(13):4645. doi: 10.3390/ijerph17134645.
This study investigates the effect of anthropogenic heat emissions from air conditioning systems (AC) on air temperature and AC energy consumption in Berlin, Germany. We conduct simulations applying the model system CCLM/DCEP-BEM, a coupled system of the mesoscale climate model COSMO-CLM (CCLM) and the urban Double Canyon Effect Parameterization scheme with a building energy model (DCEP-BEM), for a summer period of 2018. The DCEP-BEM model is designed to explicitly compute the anthropogenic heat emissions from urban buildings and the heat flux transfer between buildings and the atmosphere. We investigate two locations where the AC outdoor units are installed: either on the wall of a building (VerAC) or on the rooftop of a building (HorAC). AC waste heat emissions considerably increase the near-surface air temperature. Compared to a reference scenario without AC systems, the VerAC scenario with a target indoor temperature of 22 ∘ C results in a temperature increase of up to 0 . 6 K . The increase is more pronounced during the night and for urban areas. The effect of HorAC on air temperature is overall smaller than in VerAC. With the target indoor temperature of 22 ∘ C , an urban site's daily average AC energy consumption per floor area of a room is 9 . 1 W / m 2 , which is 35% more than that of a suburban site. This energy-saving results from the urban heat island effect and different building parameters between both sits. The maximum AC energy consumption occurs in the afternoon. When the target indoor temperature rises, the AC energy consumption decreases at a rate of about 16% per 2 K change in indoor temperature. The nighttime near-surface temperature in VerAC scenarios shows a declining trend ( 0 . 06 K per 2 K change) with increasing target indoor temperature. This feature is not obvious in HorAC scenarios which further confirms that HorAC has a smaller impact on near-surface air temperature.
本研究调查了空调系统(AC)人为热排放对德国柏林空气温度和 AC 能耗的影响。我们应用模型系统 CCLM/DCEP-BEM 进行模拟,该系统是中尺度气候模型 COSMO-CLM(CCLM)和城市双峡谷效应参数化方案与建筑能量模型(DCEP-BEM)的耦合系统,用于 2018 年夏季的一个时期。DCEP-BEM 模型旨在明确计算城市建筑的人为热排放以及建筑物与大气之间的热通量传递。我们研究了两个安装空调室外机组的地点:建筑物的墙壁上(VerAC)或建筑物的屋顶上(HorAC)。AC 废热排放会显著增加近地表空气温度。与没有空调系统的参考情景相比,目标室内温度为 22 ∘ C 的 VerAC 情景导致温度升高高达 0. 6 K 。夜间和城市地区的增幅更为明显。HorAC 对空气温度的影响总体上小于 VerAC。目标室内温度为 22 ∘ C 时,城市地区每单位建筑面积的房间的每日平均空调能耗为 9. 1 W / m 2 ,比郊区地区多 35%。这种节能效果源于城市热岛效应和两个站点之间不同的建筑参数。最大的空调能耗出现在下午。当目标室内温度升高时,空调能耗每升高 2 ∘ C 约降低 16%。VerAC 情景下夜间近地表温度呈下降趋势(室内温度每升高 2 ∘ C 下降 0. 06 K)。随着目标室内温度的升高,HorAC 情景下这种特征并不明显,这进一步证实了 HorAC 对近地表空气温度的影响较小。