Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany.
Applied Microbiology, Ruhr University Bochum, Bochum, Germany.
mBio. 2020 Jun 30;11(3):e01006-20. doi: 10.1128/mBio.01006-20.
Antibiotic acyldepsipeptides (ADEPs) deregulate ClpP, the proteolytic core of the bacterial Clp protease, thereby inhibiting its native functions and concomitantly activating it for uncontrolled proteolysis of nonnative substrates. Importantly, although ADEP-activated ClpP is assumed to target multiple polypeptide and protein substrates in the bacterial cell, not all proteins seem equally susceptible. In , the cell division protein FtsZ emerged to be particularly sensitive to degradation by ADEP-activated ClpP at low inhibitory ADEP concentrations. In fact, FtsZ is the only bacterial protein that has been confirmed to be degraded as well as within bacterial cells so far. However, the molecular reason for this preferred degradation remained elusive. Here, we report the unexpected finding that ADEP-activated ClpP alone, in the absence of any Clp-ATPase, leads to an unfolding and subsequent degradation of the N-terminal domain of FtsZ, which can be prevented by the stabilization of the FtsZ fold via nucleotide binding. At elevated antibiotic concentrations, importantly, the C terminus of FtsZ is notably targeted for degradation in addition to the N terminus. Our results show that different target structures are more or less accessible to ClpP, depending on the ADEP level present. Moreover, our data assign a Clp-ATPase-independent protein unfolding capability to the ClpP core of the bacterial Clp protease and suggest that the protein fold of FtsZ may be more flexible than previously anticipated. Acyldepsipeptide (ADEP) antibiotics effectively kill multidrug-resistant Gram-positive pathogens, including vancomycin-resistant enterococcus, penicillin-resistant (PRSP), and methicillin-resistant (MRSA). The antibacterial activity of ADEP depends on a new mechanism of action, i.e., the deregulation of bacterial protease ClpP that leads to bacterial self-digestion. Our data allow new insights into the mode of ADEP action by providing a molecular explanation for the distinct bacterial phenotypes observed at low versus high ADEP concentrations. In addition, we show that ClpP alone, in the absence of any unfoldase or energy-consuming system, and only activated by the small molecule antibiotic ADEP, leads to the unfolding of the cell division protein FtsZ.
抗生素酰基二肽(ADEPs)使细菌 Clp 蛋白酶的蛋白水解核心 ClpP 失活,从而抑制其天然功能,并同时激活其对非天然底物的失控蛋白水解。重要的是,尽管 ADEP 激活的 ClpP 被认为靶向细菌细胞中的多种多肽和蛋白质底物,但并非所有蛋白质似乎都同样容易受到影响。在[文献来源]中,细胞分裂蛋白 FtsZ 似乎特别容易在低抑制 ADEP 浓度下被 ADEP 激活的 ClpP 降解。事实上,到目前为止,FtsZ 是唯一被证实可在细菌细胞内外降解的细菌蛋白。然而,这种优先降解的分子原因仍不清楚。在这里,我们报告了一个意外的发现,即 ADEP 激活的 ClpP 本身,在没有任何 Clp-ATPase 的情况下,导致 FtsZ 的 N 端结构域展开和随后的降解,而通过核苷酸结合稳定 FtsZ 折叠可以防止这种降解。在升高的抗生素浓度下,重要的是,除了 N 端之外,FtsZ 的 C 端也明显成为降解的靶标。我们的结果表明,不同的靶结构或多或少可以被 ClpP 接近,这取决于存在的 ADEP 水平。此外,我们的数据赋予了细菌 Clp 蛋白酶的 ClpP 核心一种 Clp-ATPase 独立的蛋白展开能力,并表明 FtsZ 的蛋白折叠可能比以前预期的更灵活。酰基二肽(ADEP)抗生素可有效杀死耐多药革兰氏阳性病原体,包括万古霉素耐药肠球菌、青霉素耐药肺炎链球菌(PRSP)和耐甲氧西林金黄色葡萄球菌(MRSA)。ADEP 的抗菌活性取决于一种新的作用机制,即细菌蛋白酶 ClpP 的失活,导致细菌自我消化。我们的数据通过为在低 ADEP 浓度与高 ADEP 浓度下观察到的不同细菌表型提供分子解释,为 ADEP 作用模式提供了新的见解。此外,我们表明,ClpP 本身,在没有任何展开酶或耗能系统的情况下,并且仅被小分子抗生素 ADEP 激活,就会导致细胞分裂蛋白 FtsZ 的展开。