Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan, Pakistan.
Department of Mathematics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
Sci Rep. 2020 Jun 30;10(1):10629. doi: 10.1038/s41598-020-67685-0.
The present paper examines the flow behavior and separation region of a non-Newtonian electrically conducting Casson fluid through a two-dimensional porous channel by using Darcy's law for the steady and pulsatile flows. The vorticity-stream function approach is employed for the numerical solution of the flow equations. The effects of various emerging parameters on wall shear stress and stream-wise velocity are displayed through graphs and discussed in detail. It is noticed the increasing values of the magnetic field parameter (Hartman number) cause vanishing of the flow separation region and flattening of the stream-wise velocity component. The study also reveals that the non-Newtonian character of Casson fluid bears the potential of controlling the flow separation region in both steady and pulsating flow conditions.
本文利用达西定律研究了非牛顿导电 Casson 流体在二维多孔通道中的流动行为和分离区域,分别对定常流和脉冲流进行了研究。采用涡度流函数法对流动方程进行数值求解。通过图形展示并详细讨论了各种出现的参数对壁面剪切应力和流向速度的影响。研究发现,磁场参数(哈特曼数)的增加会导致流动分离区域的消失和流向速度分量的变平。该研究还表明,Casson 流体的非牛顿特性具有在定常和脉冲流动条件下控制流动分离区域的潜力。