Bai Qingwei, Wang Jun, Xing Shuqing, Ma Yonglin, Bao Xinyu
Key Laboratory of Integrated Exploitation of Bayan-Obo Multi-Metallic Resources, Inner Mongolia University of Science and Technology, No. 7 Arding Street, Baotou, 014010, Inner Mongolia, People's Republic of China.
Inner Mongolia Autonomous Regional Engineering Technology Research Center of Sustainable Exploitation of Rare Earth Secondary Resources, Inner Mongolia University of Science and Technology, Baotou, 014010, People's Republic of China.
Sci Rep. 2020 Jun 30;10(1):10603. doi: 10.1038/s41598-020-67352-4.
The intermittent electromagnetic fields with a large [Formula: see text] can enhance the properties of ferromagnetic materials and significantly affect paramagnetic materials. In this study, the effect of a pulsed electromagnetic field on the crystal orientation of the primary phase and microstructure evolution of an Al-Zn-Mg-Cu alloy was investigated. A mathematical model was developed to describe crystal rotation under a pulsed electromagnetic field. The model predictions show that the magnetic energy difference generated by the magnetic anisotropy of the primary crystal produces primary phases with sizes of 225-100 μm to rotate into a <111> preferred orientation. The lattice constant, the interplanar spacing, and the microstrain increase with the duty cycle of the pulsed magnetic field, especially for the (111) and (200) crystal planes. This study provides preliminary theoretical support for using pulsed electromagnetic fields to control the orientation and microscopic properties of materials.
具有较大[公式:见原文]的间歇电磁场可增强铁磁材料的性能,并显著影响顺磁材料。在本研究中,研究了脉冲电磁场对Al-Zn-Mg-Cu合金初生相晶体取向和微观结构演变的影响。建立了一个数学模型来描述脉冲电磁场作用下的晶体旋转。模型预测表明,初生晶体磁各向异性产生的磁能差会使尺寸为225 - 100μm的初生相旋转至<111>择优取向。晶格常数、面间距和微应变随脉冲磁场的占空比增加,尤其是对于(111)和(200)晶面。本研究为利用脉冲电磁场控制材料的取向和微观性能提供了初步的理论支持。