文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于多相催化的共价有机框架:原理、现状与挑战

Covalent Organic Frameworks for Heterogeneous Catalysis: Principle, Current Status, and Challenges.

作者信息

Guo Jia, Jiang Donglin

机构信息

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 2205 Songhu Road, Shanghai 200438, China.

Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.

出版信息

ACS Cent Sci. 2020 Jun 24;6(6):869-879. doi: 10.1021/acscentsci.0c00463. Epub 2020 May 29.


DOI:10.1021/acscentsci.0c00463
PMID:32607434
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7318070/
Abstract

Heterogeneous catalysts offer a cyclable platform for exploring efficient transformation systems, and their promising applications underpin a broad research interest. Covalent organic frameworks (COFs) are a class of crystalline porous networks that can integrate organic units into ordered skeletons and pores, offering an insoluble and robust platform for exploring heterogeneous catalysts. In this Outlook, we describe a conceptual scheme for designing catalytic COFs to promote various transformations. We summarize the general strategy for designing COFs to construct tailor-made skeletons and pores by emphasizing their structural uniqueness. We introduce different approaches to develop catalytic functions by sampling COFs into four regimes, i.e., skeletons, walls, pores, and systematically organized systems. We scrutinize their catalytic features and elucidate interplays with electrons, holes, and molecules by highlighting the key role of interface design in exploring catalytic COFs. We further envisage the key issues to be challenged, future research directions, and perspectives to show a full picture of designer heterogeneous catalysis based on COFs.

摘要

多相催化剂为探索高效转化系统提供了一个可循环的平台,其前景广阔的应用引发了广泛的研究兴趣。共价有机框架(COF)是一类晶体多孔网络,能够将有机单元整合到有序的骨架和孔中,为探索多相催化剂提供了一个不溶性且坚固的平台。在本展望中,我们描述了一种设计催化COF以促进各种转化的概念方案。我们通过强调其结构独特性,总结了设计COF以构建定制骨架和孔的一般策略。我们介绍了通过将COF分为四种类型(即骨架、壁、孔和系统组织的体系)来开发催化功能的不同方法。我们通过突出界面设计在探索催化COF中的关键作用,仔细研究它们的催化特性,并阐明与电子、空穴和分子的相互作用。我们进一步设想了有待挑战的关键问题、未来的研究方向和前景,以全面展示基于COF的定制多相催化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4901/7318070/824fec35de5c/oc0c00463_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4901/7318070/a95db923ea2d/oc0c00463_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4901/7318070/68b8f823ccbc/oc0c00463_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4901/7318070/2237db485ed3/oc0c00463_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4901/7318070/4d65cf2efe2f/oc0c00463_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4901/7318070/14894fee2d5b/oc0c00463_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4901/7318070/8f4d6c3dc5bf/oc0c00463_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4901/7318070/824fec35de5c/oc0c00463_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4901/7318070/a95db923ea2d/oc0c00463_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4901/7318070/68b8f823ccbc/oc0c00463_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4901/7318070/2237db485ed3/oc0c00463_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4901/7318070/4d65cf2efe2f/oc0c00463_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4901/7318070/14894fee2d5b/oc0c00463_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4901/7318070/8f4d6c3dc5bf/oc0c00463_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4901/7318070/824fec35de5c/oc0c00463_0007.jpg

相似文献

[1]
Covalent Organic Frameworks for Heterogeneous Catalysis: Principle, Current Status, and Challenges.

ACS Cent Sci. 2020-6-24

[2]
Covalent Organic Frameworks: Pore Design and Interface Engineering.

Acc Chem Res. 2020-8-18

[3]
Covalent organic frameworks: an ideal platform for designing ordered materials and advanced applications.

Chem Soc Rev. 2021-1-7

[4]
Ordered Integration and Heterogenization of Catalysts and Photosensitizers in Metal-/Covalent-Organic Frameworks for Boosting CO Photoreduction.

Acc Chem Res. 2023-10-3

[5]
Recent Progress in Metal-Free Covalent Organic Frameworks as Heterogeneous Catalysts.

Small. 2020-6

[6]
Covalent Organic Frameworks: Design, Synthesis, and Functions.

Chem Rev. 2020-8-26

[7]
Structural Regulation of Covalent Organic Frameworks for Catalysis.

Acc Chem Res. 2024-4-16

[8]
Advances in Chiral Metal-Organic and Covalent Organic Frameworks for Asymmetric Catalysis.

Small. 2021-6

[9]
2D Conjugated Covalent Organic Frameworks: Defined Synthesis and Tailor-Made Functions.

Acc Chem Res. 2022-3-15

[10]
Covalent Organic Frameworks for Chemical and Biological Sensing.

Molecules. 2022-4-18

引用本文的文献

[1]
Nitrogen-doped mesoporous carbon as an efficient metal-free catalyst for biodiesel production.

Sci Rep. 2025-8-1

[2]
Pore engineering in metal-organic frameworks and covalent organic frameworks: strategies and applications.

Chem Sci. 2025-6-14

[3]
Overcoming Photochemical Limitations in Covalent Organic Frameworks: Low-Energy Light Driven Selective O Generation Achieved by Donor-Acceptor Strategy.

Angew Chem Int Ed Engl. 2025-8-11

[4]
Unraveling Dimensional Tuning: From 2D to 3D in Covalent Organic Frameworks for Enhanced 2e Oxygen Reduction Reaction.

ACS Omega. 2025-4-28

[5]
Dimensional evolution of charge mobility and porosity in covalent organic frameworks.

Nat Commun. 2025-3-5

[6]
Beyond symmetric self-assembly and effective molarity: unlocking functional enzyme mimics with robust organic cages.

Beilstein J Org Chem. 2025-2-24

[7]
Unravelling the Atomic Structure of a Metal-Covalent Organic Framework Assembled from Ruthenium Metalloligands.

Adv Mater. 2025-4

[8]
Diffusion-programmed catalysis in nanoporous material.

Nat Commun. 2025-2-3

[9]
Exploring Supramolecular Frustrated Lewis Pairs.

Chempluschem. 2025-5

[10]
Novel transition metal-free synthetic protocols toward the construction of 2,3-dihydrobenzofurans: a recent update.

Front Chem. 2024-12-13

本文引用的文献

[1]
Topology-Templated Synthesis of Crystalline Porous Covalent Organic Frameworks.

Angew Chem Int Ed Engl. 2020-7-13

[2]
Covalent Organic Frameworks: Design, Synthesis, and Functions.

Chem Rev. 2020-8-26

[3]
Two-dimensional semiconducting covalent organic frameworks via condensation at arylmethyl carbon atoms.

Nat Commun. 2019-6-6

[4]
Divergent Synthesis of Chiral Covalent Organic Frameworks.

Angew Chem Int Ed Engl. 2019-7-8

[5]
A Covalent Organic Framework Bearing Single Ni Sites as a Synergistic Photocatalyst for Selective Photoreduction of CO to CO.

J Am Chem Soc. 2019-5-8

[6]
Reaction Environment Modification in Covalent Organic Frameworks for Catalytic Performance Enhancement.

Angew Chem Int Ed Engl. 2019-4-25

[7]
Fully Conjugated Two-Dimensional sp -Carbon Covalent Organic Frameworks as Artificial Photosystem I with High Efficiency.

Angew Chem Int Ed Engl. 2019-3-13

[8]
Designed synthesis of stable light-emitting two-dimensional sp carbon-conjugated covalent organic frameworks.

Nat Commun. 2018-10-8

[9]
Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water.

Nat Chem. 2018-10-1

[10]
Catalysis and photocatalysis by metal organic frameworks.

Chem Soc Rev. 2018-11-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索