Jo Yong-Ryun, Tersoff Jerry, Kim Min-Woo, Kim Junghwan, Kim Bong-Joong
School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea.
IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, United States.
ACS Cent Sci. 2020 Jun 24;6(6):959-968. doi: 10.1021/acscentsci.0c00385. Epub 2020 May 7.
Perovskite solar cells offer remarkable performance, but further advances will require deeper understanding and control of the materials and processing. Here, we fabricate the first single crystal nanorods of intermediate phase (MAI-PbI-DMSO), allowing us to directly observe the phase evolution while annealing in a high-vacuum transmission electron microscope, which lets up separate thermal effects from other environmental conditions such as oxygen and moisture. We attain the first full determination of the crystal structures and orientations of the intermediate phase, evolving perovskite, precipitating PbI, and e-beam induced PbI during phase conversion and decomposition. Surprisingly, the perovskite decomposition to PbI is upon cooling, critical for long-term device endurance due to the formation of MAI-rich MAPbI and PbI upon heating. Quantitative measurements with a thermodynamic model suggest the decomposition is entropically driven. The single crystal MAPbI nanorods obtained via thermal cycling exhibit excellent mobility and trap density, with full reversibility up to 100 °C (above the maximum temperature for solar cell operation) under high vacuum, offering unique potential for high-performance flexible solar cells.
钙钛矿太阳能电池性能卓越,但要取得进一步进展,需要对材料和加工过程有更深入的理解和控制。在此,我们制备出了中间相(MAI-PbI-DMSO)的首个单晶纳米棒,这使我们能够在高真空透射电子显微镜中退火时直接观察相演变过程,从而将热效应与氧气和水分等其他环境条件区分开来。我们首次全面确定了中间相、正在演变的钙钛矿、沉淀的PbI以及相转换和分解过程中电子束诱导产生的PbI的晶体结构和取向。令人惊讶的是,钙钛矿在冷却时分解为PbI,这对长期器件耐久性至关重要,因为加热时会形成富MAI的MAPbI和PbI。用热力学模型进行的定量测量表明,这种分解是由熵驱动的。通过热循环获得的单晶MAPbI纳米棒表现出优异的迁移率和陷阱密度,在高真空下高达100°C(高于太阳能电池运行的最高温度)时具有完全可逆性,为高性能柔性太阳能电池提供了独特的潜力。