Gostic Katelyn M, McGough Lauren, Baskerville Edward B, Abbott Sam, Joshi Keya, Tedijanto Christine, Kahn Rebecca, Niehus Rene, Hay James, De Salazar Pablo M, Hellewell Joel, Meakin Sophie, Munday James, Bosse Nikos I, Sherrat Katharine, Thompson Robin N, White Laura F, Huisman Jana S, Scire Jérémie, Bonhoeffer Sebastian, Stadler Tanja, Wallinga Jacco, Funk Sebastian, Lipsitch Marc, Cobey Sarah
Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA.
Centre for Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK.
medRxiv. 2020 Aug 28:2020.06.18.20134858. doi: 10.1101/2020.06.18.20134858.
Estimation of the effective reproductive number, , is important for detecting changes in disease transmission over time. During the COVID-19 pandemic, policymakers and public health officials are using to assess the effectiveness of interventions and to inform policy. However, estimation of from available data presents several challenges, with critical implications for the interpretation of the course of the pandemic. The purpose of this document is to summarize these challenges, illustrate them with examples from synthetic data, and, where possible, make recommendations. For near real-time estimation of , we recommend the approach of Cori et al. (2013), which uses data from before time and empirical estimates of the distribution of time between infections. Methods that require data from after time , such as Wallinga and Teunis (2004), are conceptually and methodologically less suited for near real-time estimation, but may be appropriate for retrospective analyses of how individuals infected at different time points contributed to spread. We advise against using methods derived from Bettencourt and Ribeiro (2008), as the resulting estimates may be biased if the underlying structural assumptions are not met. Two key challenges common to all approaches are accurate specification of the generation interval and reconstruction of the time series of new infections from observations occurring long after the moment of transmission. Naive approaches for dealing with observation delays, such as subtracting delays sampled from a distribution, can introduce bias. We provide suggestions for how to mitigate this and other technical challenges and highlight open problems in estimation.
有效繁殖数(R_t)的估计对于检测疾病传播随时间的变化非常重要。在新冠疫情期间,政策制定者和公共卫生官员正在使用(R_t)来评估干预措施的有效性并为政策提供依据。然而,从现有数据估计(R_t)存在若干挑战,这对疫情发展过程的解读具有关键影响。本文档的目的是总结这些挑战,通过合成数据的示例进行说明,并在可能的情况下提出建议。对于(R_t)的近实时估计,我们推荐Cori等人(2013年)的方法,该方法使用时间(t)之前的数据以及感染之间时间分布的经验估计。需要时间(t)之后数据的方法,如Wallinga和Teunis(2004年)的方法,在概念和方法上不太适合近实时估计,但可能适用于对不同时间点感染的个体如何导致传播进行回顾性分析。我们建议不要使用源自Bettencourt和Ribeiro(2008年)的方法,因为如果不满足潜在的结构假设,由此产生的(R_t)估计可能会有偏差。所有方法共有的两个关键挑战是准确确定代间隔以及根据传播时刻很久之后发生的观测值重建新感染的时间序列。处理观测延迟的简单方法,如从分布中减去采样的延迟,可能会引入偏差。我们提供了如何减轻这一问题及其他技术挑战的建议,并突出了(R_t)估计中的开放性问题。