Suppr超能文献

基于全基因组或外显子变异进行群体分层调整的评估。

Evaluation of population stratification adjustment using genome-wide or exonic variants.

机构信息

Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts.

Department of Neurology, Boston University School of Medicine, Boston, Massachusetts.

出版信息

Genet Epidemiol. 2020 Oct;44(7):702-716. doi: 10.1002/gepi.22332. Epub 2020 Jun 30.

Abstract

Population stratification may cause an inflated type-I error and spurious association when assessing the association between genetic variations with an outcome. Many genetic association studies are now using exonic variants, which captures only 1% of the genome, however, population stratification adjustments have not been evaluated in the context of exonic variants. We compare the performance of two established approaches: principal components analysis (PCA) and mixed-effects models and assess the utility of genome-wide (GW) and exonic variants, by simulation and using a data set from the Framingham Heart Study. Our results illustrate that although the PCs and genetic relationship matrices computed by GW and exonic markers are different, the type-I error rate of association tests for common variants with additive effect appear to be properly controlled in the presence of population stratification. In addition, by considering single nucleotide variants (SNVs) that have different levels of confounding by population stratification, we also compare the power across multiple association approaches to account for population stratification such as PC-based corrections and mixed-effects models. We find that while these two methods achieve a similar power for SNVs that have a low or medium level of confounding by population stratification, mixed-effects model can reach a higher power for SNVs highly confounded by population stratification.

摘要

人群分层可能导致在评估遗传变异与结果之间的关联时,出现 I 型错误膨胀和虚假关联。现在许多遗传关联研究都在使用外显子变异,它仅捕获基因组的 1%,然而,在外显子变异的背景下,尚未评估人群分层调整。我们比较了两种已建立的方法的性能:主成分分析(PCA)和混合效应模型,并通过模拟和使用弗雷明汉心脏研究的数据来评估全基因组(GW)和外显子变异的效用。我们的结果表明,尽管 GW 和外显子标记计算的 PCs 和遗传关系矩阵不同,但在存在人群分层的情况下,具有加性效应的常见变异关联测试的 I 型错误率似乎得到了适当控制。此外,通过考虑具有不同人群分层混杂程度的单核苷酸变异(SNVs),我们还比较了多种关联方法在考虑人群分层时的功效,例如基于 PCs 的校正和混合效应模型。我们发现,虽然这两种方法对于人群分层混杂程度较低或中等的 SNVs 具有相似的功效,但混合效应模型对于人群分层高度混杂的 SNVs 可以达到更高的功效。

相似文献

1
Evaluation of population stratification adjustment using genome-wide or exonic variants.
Genet Epidemiol. 2020 Oct;44(7):702-716. doi: 10.1002/gepi.22332. Epub 2020 Jun 30.
2
Improving the power of GWAS and avoiding confounding from population stratification with PC-Select.
Genetics. 2014 Jul;197(3):1045-9. doi: 10.1534/genetics.114.164285. Epub 2014 Apr 29.
3
Accounting for population stratification in DNA methylation studies.
Genet Epidemiol. 2014 Apr;38(3):231-41. doi: 10.1002/gepi.21789. Epub 2014 Jan 29.
5
A mixed model reduces spurious genetic associations produced by population stratification in genome-wide association studies.
Genomics. 2015 Apr;105(4):191-6. doi: 10.1016/j.ygeno.2015.01.006. Epub 2015 Jan 30.
6
On rare variants in principal component analysis of population stratification.
BMC Genet. 2020 Mar 17;21(1):34. doi: 10.1186/s12863-020-0833-x.
7
A comparison of association methods correcting for population stratification in case-control studies.
Ann Hum Genet. 2011 May;75(3):418-27. doi: 10.1111/j.1469-1809.2010.00639.x. Epub 2011 Jan 31.
8
Adjustment for population stratification via principal components in association analysis of rare variants.
Genet Epidemiol. 2013 Jan;37(1):99-109. doi: 10.1002/gepi.21691. Epub 2012 Oct 12.
9
Controlling for human population stratification in rare variant association studies.
Sci Rep. 2021 Sep 24;11(1):19015. doi: 10.1038/s41598-021-98370-5.

引用本文的文献

1
Population stratification correction using Bayesian shrinkage priors for genetic association studies.
Ann Hum Genet. 2023 Nov;87(6):302-315. doi: 10.1111/ahg.12527. Epub 2023 Sep 28.
2
Polygenic Risk for Insomnia in Adolescents of Diverse Ancestry.
Front Genet. 2021 May 10;12:654717. doi: 10.3389/fgene.2021.654717. eCollection 2021.

本文引用的文献

1
10 Years of GWAS Discovery: Biology, Function, and Translation.
Am J Hum Genet. 2017 Jul 6;101(1):5-22. doi: 10.1016/j.ajhg.2017.06.005.
2
Whole-exome sequencing to analyze population structure, parental inbreeding, and familial linkage.
Proc Natl Acad Sci U S A. 2016 Jun 14;113(24):6713-8. doi: 10.1073/pnas.1606460113. Epub 2016 May 31.
3
Control for Population Structure and Relatedness for Binary Traits in Genetic Association Studies via Logistic Mixed Models.
Am J Hum Genet. 2016 Apr 7;98(4):653-66. doi: 10.1016/j.ajhg.2016.02.012. Epub 2016 Mar 24.
4
Model-free Estimation of Recent Genetic Relatedness.
Am J Hum Genet. 2016 Jan 7;98(1):127-48. doi: 10.1016/j.ajhg.2015.11.022.
6
A global reference for human genetic variation.
Nature. 2015 Oct 1;526(7571):68-74. doi: 10.1038/nature15393.
7
A guide to genome-wide association analysis and post-analytic interrogation.
Stat Med. 2015 Dec 10;34(28):3769-92. doi: 10.1002/sim.6605. Epub 2015 Sep 6.
8
Can whole-exome sequencing data be used for linkage analysis?
Eur J Hum Genet. 2016 Apr;24(4):581-6. doi: 10.1038/ejhg.2015.143. Epub 2015 Jul 15.
10
Efficient Bayesian mixed-model analysis increases association power in large cohorts.
Nat Genet. 2015 Mar;47(3):284-90. doi: 10.1038/ng.3190. Epub 2015 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验