Suppr超能文献

控制罕见变异关联研究中的人类群体分层。

Controlling for human population stratification in rare variant association studies.

机构信息

Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.

Université de Paris, Imagine Institute, 75015, Paris, France.

出版信息

Sci Rep. 2021 Sep 24;11(1):19015. doi: 10.1038/s41598-021-98370-5.

Abstract

Population stratification is a confounder of genetic association studies. In analyses of rare variants, corrections based on principal components (PCs) and linear mixed models (LMMs) yield conflicting conclusions. Studies evaluating these approaches generally focused on limited types of structure and large sample sizes. We investigated the properties of several correction methods through a large simulation study using real exome data, and several within- and between-continent stratification scenarios. We considered different sample sizes, with situations including as few as 50 cases, to account for the analysis of rare disorders. Large samples showed that accounting for stratification was more difficult with a continental than with a worldwide structure. When considering a sample of 50 cases, an inflation of type-I-errors was observed with PCs for small numbers of controls (≤ 100), and with LMMs for large numbers of controls (≥ 1000). We also tested a novel local permutation method (LocPerm), which maintained a correct type-I-error in all situations. Powers were equivalent for all approaches pointing out that the key issue is to properly control type-I-errors. Finally, we found that power of analyses including small numbers of cases can be increased, by adding a large panel of external controls, provided an appropriate stratification correction was used.

摘要

人群分层是遗传关联研究的混杂因素。在稀有变异分析中,基于主成分 (PCs) 和线性混合模型 (LMMs) 的校正方法得出了相互矛盾的结论。评估这些方法的研究通常集中在有限的结构类型和大样本量上。我们通过使用真实外显子数据和几种内部和跨大陆分层场景的大型模拟研究来研究几种校正方法的特性。我们考虑了不同的样本量,包括 50 个案例这样的小样本量,以分析罕见疾病。大型样本表明,与全球结构相比,大陆结构分层更难处理。当考虑 50 个案例的样本时,对于控制样本数量较少(≤100)的情况,PCs 会观察到Ⅰ型错误的膨胀,对于控制样本数量较大(≥1000)的情况,LMM 会观察到Ⅰ型错误的膨胀。我们还测试了一种新的局部置换方法 (LocPerm),它在所有情况下都保持正确的Ⅰ型错误率。所有方法的功效都相当,这表明关键问题是正确控制Ⅰ型错误率。最后,我们发现,通过添加大量外部对照,可以增加包括少数案例的分析的功效,前提是使用了适当的分层校正方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验