Suppr超能文献

如何解决健康经济离散事件模拟模型中的不确定性:以慢性阻塞性肺疾病为例。

How to Address Uncertainty in Health Economic Discrete-Event Simulation Models: An Illustration for Chronic Obstructive Pulmonary Disease.

机构信息

Institute for Medical Technology Assessment (iMTA), Erasmus University Rotterdam, Rotterdam, Zuid-Holland, The Netherlands.

Erasmus School of Health Policy & Management (ESHPM), Erasmus University Rotterdam, Rotterdam, The Netherlands.

出版信息

Med Decis Making. 2020 Jul;40(5):619-632. doi: 10.1177/0272989X20932145. Epub 2020 Jul 1.

Abstract

. Evaluation of personalized treatment options requires health economic models that include multiple patient characteristics. Patient-level discrete-event simulation (DES) models are deemed appropriate because of their ability to simulate a variety of characteristics and treatment pathways. However, DES models are scarce in the literature, and details about their methods are often missing. . We describe 4 challenges associated with modeling heterogeneity and structural, stochastic, and parameter uncertainty that can be encountered during the development of DES models. We explain why these are important and how to correctly implement them. To illustrate the impact of the modeling choices discussed, we use (results of) a model for chronic obstructive pulmonary disease (COPD) as a case study. . The results from the case study showed that, under a correct implementation of the uncertainty in the model, a hypothetical intervention can be deemed as cost-effective. The consequences of incorrect modeling uncertainty included an increase in the incremental cost-effectiveness ratio ranging from 50% to almost a factor of 14, an extended life expectancy of approximately 1.4 years, and an enormously increased uncertainty around the model outcomes. Thus, modeling uncertainty incorrectly can have substantial implications for decision making. . This article provides guidance on the implementation of uncertainty in DES models and improves the transparency of reporting uncertainty methods. The COPD case study illustrates the issues described in the article and helps understanding them better. The model R code shows how the uncertainty was implemented. For readers not familiar with R, the model's pseudo-code can be used to understand how the model works. By doing this, we can help other developers, who are likely to face similar challenges to those described here.

摘要

. 个性化治疗方案的评估需要包含多种患者特征的健康经济模型。由于能够模拟各种特征和治疗途径,患者层面的离散事件模拟 (DES) 模型被认为是合适的。然而,文献中 DES 模型稀缺,其方法的详细信息通常缺失。. 我们描述了在开发 DES 模型时可能遇到的与建模异质性以及结构、随机和参数不确定性相关的 4 个挑战。我们解释了这些为什么很重要以及如何正确实施它们。为了说明讨论的建模选择的影响,我们使用慢性阻塞性肺疾病 (COPD) 模型的(结果)作为案例研究。. 案例研究的结果表明,在正确实施模型不确定性的情况下,假设干预措施可以被认为具有成本效益。不正确的建模不确定性会导致增量成本效益比增加 50%至近 14 倍,期望寿命延长约 1.4 年,以及模型结果的不确定性大大增加。因此,不正确地进行建模不确定性会对决策产生重大影响。. 本文提供了关于在 DES 模型中实施不确定性的指导,并提高了报告不确定性方法的透明度。COPD 案例研究说明了本文中描述的问题,并帮助更好地理解它们。模型 R 代码展示了如何实现不确定性。对于不熟悉 R 的读者,可以使用模型的伪代码来理解模型的工作原理。通过这样做,我们可以帮助其他可能面临与这里描述的类似挑战的开发者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa7c/7401182/e5d49506232c/10.1177_0272989X20932145-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验