Health Technology and Services Research Department, MIRA institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
Department of Medical Oncology, University Medical Centre, Huispost B02.225, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands.
BMC Med Res Methodol. 2017 Dec 15;17(1):170. doi: 10.1186/s12874-017-0437-y.
Parametric distributions based on individual patient data can be used to represent both stochastic and parameter uncertainty. Although general guidance is available on how parameter uncertainty should be accounted for in probabilistic sensitivity analysis, there is no comprehensive guidance on reflecting parameter uncertainty in the (correlated) parameters of distributions used to represent stochastic uncertainty in patient-level models. This study aims to provide this guidance by proposing appropriate methods and illustrating the impact of this uncertainty on modeling outcomes.
Two approaches, 1) using non-parametric bootstrapping and 2) using multivariate Normal distributions, were applied in a simulation and case study. The approaches were compared based on point-estimates and distributions of time-to-event and health economic outcomes. To assess sample size impact on the uncertainty in these outcomes, sample size was varied in the simulation study and subgroup analyses were performed for the case-study.
Accounting for parameter uncertainty in distributions that reflect stochastic uncertainty substantially increased the uncertainty surrounding health economic outcomes, illustrated by larger confidence ellipses surrounding the cost-effectiveness point-estimates and different cost-effectiveness acceptability curves. Although both approaches performed similar for larger sample sizes (i.e. n = 500), the second approach was more sensitive to extreme values for small sample sizes (i.e. n = 25), yielding infeasible modeling outcomes.
Modelers should be aware that parameter uncertainty in distributions used to describe stochastic uncertainty needs to be reflected in probabilistic sensitivity analysis, as it could substantially impact the total amount of uncertainty surrounding health economic outcomes. If feasible, the bootstrap approach is recommended to account for this uncertainty.
基于个体患者数据的参数分布可用于表示随机和参数不确定性。虽然有关于如何在概率敏感性分析中考虑参数不确定性的一般指南,但对于如何反映用于表示患者水平模型中随机不确定性的分布的(相关)参数中的参数不确定性,尚无全面的指南。本研究旨在通过提出适当的方法并说明这种不确定性对建模结果的影响来提供这方面的指导。
在模拟和案例研究中应用了两种方法,1)使用非参数自举法,2)使用多元正态分布法。基于生存时间和健康经济结果的点估计值和分布,对这些方法进行了比较。为了评估样本量对这些结果不确定性的影响,在模拟研究中改变了样本量,并对案例研究进行了亚组分析。
在反映随机不确定性的分布中考虑参数不确定性,大大增加了健康经济结果周围的不确定性,表现为成本效益点估计值周围的置信椭圆更大,以及不同的成本效益可接受性曲线。虽然对于较大的样本量(即 n=500),两种方法的表现相似,但第二种方法对于较小的样本量(即 n=25)更敏感,导致不可行的建模结果。
建模者应该意识到,用于描述随机不确定性的分布中的参数不确定性需要在概率敏感性分析中得到反映,因为它可能会大大影响健康经济结果周围的总不确定性。如果可行,建议使用自举法来考虑这种不确定性。