Suppr超能文献

在社会神经科学中使用强化学习模型:框架、陷阱和最佳实践建议。

Using reinforcement learning models in social neuroscience: frameworks, pitfalls and suggestions of best practices.

机构信息

Neuropsychopharmacology and Biopsychology Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna 1010, Austria.

Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna 1010, Austria.

出版信息

Soc Cogn Affect Neurosci. 2020 Jul 30;15(6):695-707. doi: 10.1093/scan/nsaa089.

Abstract

The recent years have witnessed a dramatic increase in the use of reinforcement learning (RL) models in social, cognitive and affective neuroscience. This approach, in combination with neuroimaging techniques such as functional magnetic resonance imaging, enables quantitative investigations into latent mechanistic processes. However, increased use of relatively complex computational approaches has led to potential misconceptions and imprecise interpretations. Here, we present a comprehensive framework for the examination of (social) decision-making with the simple Rescorla-Wagner RL model. We discuss common pitfalls in its application and provide practical suggestions. First, with simulation, we unpack the functional role of the learning rate and pinpoint what could easily go wrong when interpreting differences in the learning rate. Then, we discuss the inevitable collinearity between outcome and prediction error in RL models and provide suggestions of how to justify whether the observed neural activation is related to the prediction error rather than outcome valence. Finally, we suggest posterior predictive check is a crucial step after model comparison, and we articulate employing hierarchical modeling for parameter estimation. We aim to provide simple and scalable explanations and practical guidelines for employing RL models to assist both beginners and advanced users in better implementing and interpreting their model-based analyses.

摘要

近年来,强化学习(RL)模型在社会、认知和情感神经科学中的应用急剧增加。这种方法与功能磁共振成像等神经影像学技术相结合,能够对潜在的机械过程进行定量研究。然而,相对复杂的计算方法的使用增加,导致了潜在的误解和不准确的解释。在这里,我们提出了一个使用简单的 Rescorla-Wagner RL 模型来检验(社会)决策的综合框架。我们讨论了其应用中的常见陷阱,并提供了实用的建议。首先,通过模拟,我们解开了学习率的功能作用,并指出在解释学习率差异时容易出错的地方。然后,我们讨论了 RL 模型中结果和预测误差之间不可避免的共线性,并提供了如何证明观察到的神经激活与预测误差而不是结果效价有关的建议。最后,我们建议在模型比较后进行后验预测检验是一个关键步骤,并阐明了使用分层建模进行参数估计的方法。我们的目标是为使用 RL 模型提供简单且可扩展的解释和实用指南,以帮助初学者和高级用户更好地实施和解释基于模型的分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f16/7393303/437462c804d8/nsaa089f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验