Suppr超能文献

计算模型在社会神经科学中的应用:前景与陷阱。

The application of computational models to social neuroscience: promises and pitfalls.

作者信息

Charpentier Caroline J, O'Doherty John P

机构信息

a Division of Humanities and Social Sciences , California Institute of Technology , Pasadena , CA , USA.

出版信息

Soc Neurosci. 2018 Dec;13(6):637-647. doi: 10.1080/17470919.2018.1518834. Epub 2018 Sep 12.

Abstract

Interactions with conspecifics are key to any social species. In order to navigate this social world, it is crucial for individuals to learn from and about others. From learning new skills by observing parents perform them to making complex collective decisions, understanding the mechanisms underlying social cognitive processes has been of considerable interest to psychologists and neuroscientists. Here, we review studies that have used computational modelling techniques, combined with neuroimaging, to shed light on how people learn and make decisions in social contexts. As opposed to standard social neuroscience methods, the computational approach allows one to directly examine where in the brain particular computations, as estimated by models of behavior, are implemented. Findings suggest that people use several strategies to learn from others: vicarious reward learning, where one learns from observing the reward outcomes of another agent; action imitation, which relies on encoding a prediction error between the expected and actual actions of the other agent; and social inference, where one learns by inferring the goals and intentions of others. These computations are implemented in distinct neural networks, which may be recruited adaptively depending on task demands, the environment and other social factors.

摘要

与同种个体的互动对任何社会性物种来说都至关重要。为了在这个社会世界中顺利行事,个体向他人学习并了解他人至关重要。从通过观察父母执行新技能来学习新技能,到做出复杂的集体决策,理解社会认知过程背后的机制一直是心理学家和神经科学家相当感兴趣的课题。在此,我们回顾了一些研究,这些研究使用计算建模技术并结合神经成像,以阐明人们在社会环境中如何学习和做出决策。与标准的社会神经科学方法不同,计算方法使人们能够直接检查大脑中由行为模型估计的特定计算是在哪里实现的。研究结果表明,人们使用多种策略向他人学习:替代性奖励学习,即通过观察另一个主体的奖励结果来学习;动作模仿,它依赖于对另一个主体预期动作和实际动作之间的预测误差进行编码;以及社会推理,即通过推断他人的目标和意图来学习。这些计算在不同的神经网络中实现,这些神经网络可能会根据任务需求、环境和其他社会因素进行适应性调用。

相似文献

引用本文的文献

1
Social inequity disrupts reward-based learning.社会不平等会扰乱基于奖励的学习。
Commun Psychol. 2025 Aug 16;3(1):125. doi: 10.1038/s44271-025-00300-y.
5
Humans can infer social preferences from decision speed alone.人类仅凭决策速度就能推断出社会偏好。
PLoS Biol. 2024 Jun 20;22(6):e3002686. doi: 10.1371/journal.pbio.3002686. eCollection 2024 Jun.
7
The social transmission of empathy relies on observational reinforcement learning.同理心的社会传递依赖于观察强化学习。
Proc Natl Acad Sci U S A. 2024 Feb 27;121(9):e2313073121. doi: 10.1073/pnas.2313073121. Epub 2024 Feb 21.
10

本文引用的文献

2
A model of risk and mental state shifts during social interaction.社会互动中风险和心理状态转变的模型。
PLoS Comput Biol. 2018 Feb 15;14(2):e1005935. doi: 10.1371/journal.pcbi.1005935. eCollection 2018 Feb.
3
Stimulus generalization as a mechanism for learning to trust.刺激泛化作为学习信任的一种机制。
Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):E1690-E1697. doi: 10.1073/pnas.1715227115. Epub 2018 Jan 29.
9
Optimal incentives for collective intelligence.集体智慧的最优激励措施。
Proc Natl Acad Sci U S A. 2017 May 16;114(20):5077-5082. doi: 10.1073/pnas.1618722114. Epub 2017 May 1.
10
Moral transgressions corrupt neural representations of value.道德违规会破坏价值的神经表征。
Nat Neurosci. 2017 Jun;20(6):879-885. doi: 10.1038/nn.4557. Epub 2017 May 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验