Suppr超能文献

[Impact of Parameterization on the Estimation of Ammonia Emissions:A Case Study over the Yangtze River Delta].

作者信息

Zhang Qi, Huang Ling, Yin Si-Jia, Wang Qian, Li Hong-Li, Wang Yang-Jun, Wang Jun, Chen Yong-Hang, Li Li

机构信息

College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.

School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.

出版信息

Huan Jing Ke Xue. 2020 Mar 8;41(3):1158-1166. doi: 10.13227/j.hjkx.201908131.

Abstract

Atmospheric ammonia plays an important role in the formation of secondary inorganic composition of PM, which has attracted a high level of attention from researchers both in China and abroad. Quantifying ammonia emissions is of great scientific significance regarding research on the formation of secondary aerosol, realizing better model performance, and control of ammonia emissions. Previous studies have shown that agricultural activities are the dominant source of atmospheric ammonia, of which livestock and poultry farming contribute the most. Existing studies on estimating ammonia emissions from livestock and poultry farming activities are mostly based on emission factors and activities. However, the choice of different emission activities could lead to large differences in estimated ammonia emissions. This study makes a variety of assumptions from the selection of activity levels (volume vs. inventory) and emission coefficients (monthly vs. annual average temperature), and establishes eight scenarios from which to calculate atmospheric ammonia emissions from livestock and poultry farming in the Yangtze River Delta region in 2017. The results show that selection of different activity levels has the greatest impact on estimated ammonia emissions; estimation based on volume is higher than that based on inventory by 27.6%-34.1%. Calculation based on a more detailed monthly average temperature is higher than using average annual temperature by 3000 to 4000 tons per year. In addition, the spatial and temporal distributions of the ammonia emissions are also closely related to the choice of volume vs. inventory and the choice of monthly average temperature vs. annual average temperature. When using inventory as the emission activity, Zhoushan (Zhejiang Province) has the lowest ammonia emissions, while Huainan (Anhui Province) has the highest. In contrast, when volume is used, Lishui (Zhejiang Province) has the lowest ammonia emissions and Nanjing (Jiangsu Province) has the highest. Emissions calculations based on monthly average temperature are supposed to be more representative than those based on annual average temperature, with the highest emissions from May to September and the lowest in the winter (December, January, and February).

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验