Hansen Henriette Wase, Lundin Filippa, Adrjanowicz Karolina, Frick Bernhard, Matic Aleksandar, Niss Kristine
Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark.
Phys Chem Chem Phys. 2020 Jul 7;22(25):14169-14176. doi: 10.1039/d0cp01258k. Epub 2020 Jun 17.
Room temperature ionic liquids are salts with low melting points achieved by employing bulky and asymmetrical ions. The molecular design leads to apolar and polar parts as well as the presence of competing Coulomb and van der Waals interactions giving rise to nano-scale structure, e.g. charge ordering. In this paper we address the question of how these nano-scale structures influence transport properties and dynamics on different timescales. We apply pressure and temperature as control parameters and investigate the structure factor, charge transport, microscopic alpha relaxation and phonon dynamics in the phase diagram of an ionic liquid. Including viscosity and self diffusion data from literature we find that all the dynamic and transport variables studied follow the same density scaling, i.e. they all depend on the scaling variable Γ = ρ/T, with γ = 2.8. The molecular nearest neighbor structure is found to follow a density scaling identical to that of the dynamics, while this is not the case for the charge ordering, indicating that the charge ordering has little influence on the investigated dynamics.
室温离子液体是通过使用体积庞大且不对称的离子而获得的低熔点盐。分子设计导致了非极性和极性部分的存在,以及竞争的库仑相互作用和范德华相互作用的存在,从而产生了纳米级结构,例如电荷有序。在本文中,我们探讨了这些纳米级结构如何在不同时间尺度上影响传输性质和动力学。我们将压力和温度作为控制参数,并研究离子液体相图中的结构因子、电荷传输、微观α弛豫和声子动力学。结合文献中的粘度和自扩散数据,我们发现所有研究的动力学和传输变量都遵循相同的密度标度,即它们都取决于标度变量Γ = ρ/T,其中γ = 2.8。发现分子最近邻结构遵循与动力学相同的密度标度,而电荷有序情况并非如此,这表明电荷有序对所研究的动力学影响很小。