Suppr超能文献

用于高效锂金属电池的3D聚丙烯腈纳米纤维与柔性聚二甲基硅氧烷大分子复合全固态电解质

A 3D polyacrylonitrile nanofiber and flexible polydimethylsiloxane macromolecule combined all-solid-state composite electrolyte for efficient lithium metal batteries.

作者信息

Gao Lu, Li Jianxin, Sarmad Bushra, Cheng Bowen, Kang Weimin, Deng Nanping

机构信息

State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.

School of International Education, Tiangong University, Tianjin 300387, PR China.

出版信息

Nanoscale. 2020 Jul 9;12(26):14279-14289. doi: 10.1039/d0nr04244g.

Abstract

All-solid-state polymer electrolytes have received widespread attention due to their superior safety over liquid electrolytes that are prone to leaks. However, poor ionic conductivity and uncontrollable lithium dendrite growth have greatly limited the rapid development of polymer electrolytes. Hence, we report a composite polymer electrolyte combining a polyacrylonitrile (PAN) electrospun fiber membrane, flexible polydimethylsiloxane (PDMS) macromolecules and a polyethylene oxide (PEO) polymer. The introduction of PDMS with a highly flexible molecular chain, ultra-low glass transition energy and high free volume can help optimize lithium ion migration paths and improve the interface compatibility between the electrolyte and the electrode. In addition, the nano-network structure of the PAN nanofiber membrane can promote the interaction between adjacent polymer molecular chains and improve the mechanical properties of the composite electrolyte to suppress the lithium dendrite growth. The synergistic effect of the PDMS and PAN electrospun nanofiber membranes endows the composite electrolyte with superior ionic conductivity and excellent electrochemical stability towards lithium metal. The interface impedance of the Li/Li symmetric battery with the composite electrolyte after 15 days of continuous standing has no significant change compared with the initial state, and the battery can maintain stable cycling for 1200 h without short circuit under a dynamic current of 0.3 mA cm-2. The obtained composite polymer electrolyte has potential application prospects in the field of high-energy lithium metal batteries.

摘要

全固态聚合物电解质因其相对于易泄漏的液体电解质具有卓越的安全性而受到广泛关注。然而,离子电导率差和锂枝晶生长不可控极大地限制了聚合物电解质的快速发展。因此,我们报道了一种复合聚合物电解质,它由聚丙烯腈(PAN)电纺纤维膜、柔性聚二甲基硅氧烷(PDMS)大分子和聚环氧乙烷(PEO)聚合物组成。引入具有高度柔性分子链、超低玻璃化转变能和高自由体积的PDMS有助于优化锂离子迁移路径,并改善电解质与电极之间的界面相容性。此外,PAN纳米纤维膜的纳米网络结构可以促进相邻聚合物分子链之间的相互作用,并提高复合电解质的机械性能以抑制锂枝晶生长。PDMS和PAN电纺纳米纤维膜的协同作用赋予了复合电解质优异的离子电导率和对锂金属的出色电化学稳定性。使用该复合电解质的Li/Li对称电池在连续静置15天后,其界面阻抗与初始状态相比无显著变化,并且在0.3 mA cm-2的动态电流下,电池可保持稳定循环1200 h而不短路。所制备的复合聚合物电解质在高能锂金属电池领域具有潜在的应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验