Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Currently at Mount Sinai Hospital, New York, NY 10029, USA.
Cell Rep. 2020 Jun 30;31(13):107840. doi: 10.1016/j.celrep.2020.107840.
Stresses associated with disease may pathologically remodel the proteome by both increasing interaction strength and altering interaction partners, resulting in proteome-wide connectivity dysfunctions. Chaperones play an important role in these alterations, but how these changes are executed remains largely unknown. Our study unveils a specific N-glycosylation pattern used by a chaperone, Glucose-regulated protein 94 (GRP94), to alter its conformational fitness and stabilize a state most permissive for stable interactions with proteins at the plasma membrane. This "protein assembly mutation' remodels protein networks and properties of the cell. We show in cells, human specimens, and mouse xenografts that proteome connectivity is restorable by inhibition of the N-glycosylated GRP94 variant. In summary, we provide biochemical evidence for stressor-induced chaperone-mediated protein mis-assemblies and demonstrate how these alterations are actionable in disease.
疾病相关的应激可以通过增加相互作用强度和改变相互作用伙伴来病理性地重塑蛋白质组,导致蛋白质组广泛的连接功能障碍。伴侣蛋白在这些改变中起着重要作用,但这些变化是如何执行的在很大程度上仍然未知。我们的研究揭示了伴侣蛋白葡萄糖调节蛋白 94(GRP94)使用的一种特定的 N-糖基化模式,这种模式改变了它的构象适应性,并稳定了一种最有利于与质膜上的蛋白质稳定相互作用的状态。这种“蛋白质组装突变”重塑了蛋白质网络和细胞的特性。我们在细胞、人类标本和小鼠异种移植中表明,通过抑制 N-糖基化的 GRP94 变体,蛋白质组的连接性是可以恢复的。总之,我们提供了应激诱导的伴侣蛋白介导的蛋白质错误组装的生化证据,并展示了这些改变在疾病中的可操作性。