Suppr超能文献

水的电化:原理与应用。

Water electrification: Principles and applications.

机构信息

School of EEE, Nanyang Technological University, 639798, Singapore; School of Material Science and Engineering, Jilin University, Changchun 130022, China.

出版信息

Adv Colloid Interface Sci. 2020 Aug;282:102188. doi: 10.1016/j.cis.2020.102188. Epub 2020 Jun 6.

Abstract

Deep engineering of liquid water by charge and impurity injection, charged support, current flow, hydrophobic confinement, or applying a directional field has becoming increasingly important to the mankind toward overcoming energy and environment crisis. One can mediate the processes or temperatures of molecular evaporation for clean water harvesting, HO bond dissociation for H fuel generation, solidification for living-organism cryopreservation, structure stiffening for bioengineering, etc., with mechanisms being still puzzling. We show that the framework of "hydrogen bonding and electronic dynamics" has substantiated the progress in the fundamental issues and the aimed engineering. The segmental disparity of the coupled hydrogen bond (O:HO or HB with ":" being lone pair of oxygen) resolves their specific-heat curves and turns out a quasisolid phase (QS, bound at -15 and 4 °C). Electrification shows dual functionality that not only aligns, orders, polarizes water molecules but also stretches the O:HO bond. The O:HO segmental cooperative relaxation and polarization shift the QS boundary through Einstein's relation, ΔΘ ∝ Δω, resulting in a gel-like, viscoelastic, and stable supersolid phase with raised melting point T and lowered temperatures for vaporization T and ice nucleation T. The supersolidity and electro structure ordering provide additional forces to reinforce Armstrong's water bridge. QS dispersion and the secondary effect of electrification such as compression define the T for Dufour's electro-freezing. The T depression, surface stress disruption, and electrostatic attraction raise Asakawa's molecular evaporability. Composition of opposite, compatible fields eases the HO dissociation and soil wetting. Progress evidences not only the essentiality of the coupled O:HO bond theory but also the feasibility of engineering water and solutions by programmed electrification.

摘要

通过电荷和杂质注入、带电支撑、电流流动、疏水性限制或施加定向场对液态水进行深度工程化,对于人类克服能源和环境危机变得越来越重要。人们可以通过机制仍然令人困惑的方式调节分子蒸发过程或温度以实现清洁水的收集、HO 键的解离以生成 H 燃料、用于生物冻存的固化、生物工程的结构增强等。我们表明,“氢键和电子动力学”框架已经证实了在基本问题和目标工程方面的进展。氢键(O:HO 或 HB,“:”为氧的孤对电子)的分段差异解析了它们的比热曲线,并产生了准固态(QS,在-15 和 4°C 时被束缚)。带电显示出双重功能,不仅可以对齐、排序、极化水分子,还可以拉伸 O:HO 键。O:HO 段合作弛豫和极化通过爱因斯坦关系将 QS 边界移动,ΔΘ∝Δω,导致凝胶状、粘弹性和稳定的超固态,具有升高的熔点 T 和降低的蒸发温度 T 和冰核化温度 T。超固态和电结构有序为阿姆斯特朗的水桥提供了额外的增强力。QS 分散和带电的二次效应,如压缩,定义了杜弗尔电冻结的 T。T 降低、表面应力破坏和静电吸引提高了赤川的分子可蒸发性。相反、兼容场的组成缓解了 HO 的解离和土壤润湿。进展不仅证明了氢键理论的重要性,而且证明了通过编程带电来工程化水和溶液的可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验