Suppr超能文献

马库斯-列维奇-乔特纳理论的半经典瞬子表述

Semiclassical instanton formulation of Marcus-Levich-Jortner theory.

作者信息

Heller Eric R, Richardson Jeremy O

机构信息

Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland.

出版信息

J Chem Phys. 2020 Jun 28;152(24):244117. doi: 10.1063/5.0013521.

Abstract

Marcus-Levich-Jortner (MLJ) theory is one of the most commonly used methods for including nuclear quantum effects in the calculation of electron-transfer rates and for interpreting experimental data. It divides the molecular problem into a subsystem treated quantum-mechanically by Fermi's golden rule and a solvent bath treated by classical Marcus theory. As an extension of this idea, we here present a "reduced" semiclassical instanton theory, which is a multiscale method for simulating quantum tunneling of the subsystem in molecular detail in the presence of a harmonic bath. We demonstrate that instanton theory is typically significantly more accurate than the cumulant expansion or the semiclassical Franck-Condon sum, which can give orders-of-magnitude errors and, in general, do not obey detailed balance. As opposed to MLJ theory, which is based on wavefunctions, instanton theory is based on path integrals and thus does not require solutions of the Schrödinger equation nor even global knowledge of the ground- and excited-state potentials within the subsystem. It can thus be efficiently applied to complex, anharmonic multidimensional subsystems without making further approximations. In addition to predicting accurate rates, instanton theory gives a high level of insight into the reaction mechanism by locating the dominant tunneling pathway as well as providing similar information to MLJ theory on the bath activation energy and the vibrational excitation energies of the subsystem states involved in the reaction.

摘要

马库斯 - 列维奇 - 约尔特纳(MLJ)理论是在电子转移速率计算中纳入核量子效应以及解释实验数据时最常用的方法之一。它将分子问题分为一个通过费米黄金规则进行量子力学处理的子系统和一个由经典马库斯理论处理的溶剂浴。作为这一思想的延伸,我们在此提出一种“简化”的半经典瞬子理论,这是一种在存在谐波浴的情况下,用于详细模拟分子子系统量子隧穿的多尺度方法。我们证明,瞬子理论通常比累积量展开或半经典弗兰克 - 康登求和要准确得多,后两者可能会给出几个数量级的误差,并且一般不满足细致平衡。与基于波函数的MLJ理论不同,瞬子理论基于路径积分,因此既不需要求解薛定谔方程,甚至也不需要子系统内基态和激发态势能的全局知识。因此,它可以有效地应用于复杂的非谐多维子系统,而无需进一步近似。除了预测准确的速率外,瞬子理论还通过确定主导隧穿路径,以及提供与MLJ理论类似的关于浴活化能和反应中涉及的子系统状态的振动激发能的信息,对反应机理有深入的了解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验