Suppr超能文献

在机器学习框架中从时间序列中检测因果关系。

Detecting causality from time series in a machine learning framework.

机构信息

Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China.

Meteorological Institute, University of Hamburg, Hamburg 20144, Germany.

出版信息

Chaos. 2020 Jun;30(6):063116. doi: 10.1063/5.0007670.

Abstract

Detecting causality from observational data is a challenging problem. Here, we propose a machine learning based causality approach, Reservoir Computing Causality (RCC), in order to systematically identify causal relationships between variables. We demonstrate that RCC is able to identify the causal direction, coupling delay, and causal chain relations from time series. Compared to a well-known phase space reconstruction based causality method, Extended Convergent Cross Mapping, RCC does not require the estimation of the embedding dimension and delay time. Moreover, RCC has three additional advantages: (i) robustness to noisy time series; (ii) computational efficiency; and (iii) seamless causal inference from high-dimensional data. We also illustrate the power of RCC in identifying remote causal interactions of high-dimensional systems and demonstrate its usability on a real-world example using atmospheric circulation data. Our results suggest that RCC can accurately detect causal relationships in complex systems.

摘要

从观测数据中检测因果关系是一个具有挑战性的问题。在这里,我们提出了一种基于机器学习的因果方法,即储层计算因果关系(RCC),以系统地识别变量之间的因果关系。我们证明 RCC 能够从时间序列中识别因果方向、耦合延迟和因果链关系。与一种著名的基于相空间重构的因果方法,即扩展会聚交叉映射相比,RCC 不需要估计嵌入维度和延迟时间。此外,RCC 还有三个额外的优点:(i)对噪声时间序列的鲁棒性;(ii)计算效率;以及(iii)从高维数据中无缝进行因果推断。我们还说明了 RCC 在识别高维系统远程因果相互作用方面的强大功能,并通过使用大气环流数据的实际示例说明了其可用性。我们的结果表明,RCC 可以准确地检测复杂系统中的因果关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验