Suppr超能文献

内分泌流行病学中的因果推断和机器学习。

Causal inference and machine learning in endocrine epidemiology.

机构信息

Department of Social Epidemiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.

Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8501, Japan.

出版信息

Endocr J. 2024 Oct 1;71(10):945-953. doi: 10.1507/endocrj.EJ24-0193. Epub 2024 Jul 6.

Abstract

With the rapid development of computer science, there is an increasing demand for the use of causal inference methods and machine learning in the research of endocrine disorders and their long-term health outcomes. However, studies on the effective and appropriate applications of these approaches in real-world data and clinical settings are still limited. This review will illustrate the use of causal inference and machine learning in epidemiological research within the field of endocrinology and metabolism. It will examine each concept of causal inference and machine learning through application examples of endocrine disorders. Subsequently, the paper will discuss the integration of machine learning within the causal inference framework, including (i) the estimation of treatment effects or the causal relationship between exposure and outcomes, and (ii) the evaluation of heterogeneity in such treatment effects (or exposure-outcome causal relationship) based on individuals' characteristics. Accurately assessing causal relationships and their heterogeneity across different individuals is crucial not only for determining effective interventions, but also for the appropriate allocation of medical resources and reducing healthcare disparities. By illustrating some application examples in endocrinology, this review aims to enhance readers' understanding and application of causal inference and machine learning in future epidemiological studies focusing on endocrine disorders.

摘要

随着计算机科学的飞速发展,在内分泌疾病及其长期健康结局的研究中,越来越需要使用因果推理方法和机器学习。然而,在真实世界的数据和临床环境中有效和适当应用这些方法的研究仍然有限。本综述将说明因果推理和机器学习在内分泌学和代谢领域的流行病学研究中的应用。它将通过内分泌疾病的应用示例来检查因果推理和机器学习的每个概念。随后,本文将讨论机器学习在因果推理框架中的整合,包括(i)治疗效果或暴露与结局之间因果关系的估计,以及(ii)基于个体特征评估这种治疗效果(或暴露-结局因果关系)的异质性。准确评估不同个体之间的因果关系及其异质性不仅对于确定有效的干预措施至关重要,而且对于适当分配医疗资源和减少医疗保健差距也至关重要。通过在内分泌学中举例说明一些应用示例,本综述旨在增强读者对因果推理和机器学习在未来专注于内分泌疾病的流行病学研究中的理解和应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af71/11778366/a1364b17d06f/71_EJ24-0193_3.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验