Suppr超能文献

基于证据权重法确定空气质量监测网络的区域代表性站点:基于卫星数据的分析

Weight-of-evidence approach to identify regionally representative sites for air-quality monitoring network: Satellite data-based analysis.

作者信息

Lekinwala Nirav L, Bharadwaj Ankur, Sunder Raman Ramya, Bhushan Mani, Bali Kunal, Dey Sagnik

机构信息

Department of Chemical Engineering, IIT Bombay.

Department of Earth and Environmental Sciences, IISER Bhopal.

出版信息

MethodsX. 2020 Jun 4;7:100949. doi: 10.1016/j.mex.2020.100949. eCollection 2020.

Abstract

The methodology discussed in Lekinwala et al., 2020, hereinafter referred to as the 'parent article', is used to setup a nation-wide network for background PM measurement at strategic locations, optimally placing sites to obtain maximum regionally representative PM concentrations with minimum number of sites. Traditionally, in-situ PM measurements are obtained for several potential sites and compared to identify the most regionally representative sites [4], Wongphatarakul et al., 1998) at the location. The 'parent article' proposes the use of satellite-derived proxy for aerosol (Aerosol Optical Depth, AOD) data in the absence of in-situ PM2.5 measurements. This article focuses on the details about satellite-data processing which forms part of the methodology discussed in the 'parent article'. Following are some relevant aspects:•High resolution AOD is retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASA's Aqua and Terra satellite using Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm. The data is stored as grids of size 1200  ×  1200 and a total of seven such grids cover the Indian land mass. These grids were merged, regridded and multiplied by conversion factors from GEOS-Chem Chemical Transport Model to obtain PM values. Standard set of tools like CDO and NCL are used to manipulate the satellite-data (*.nc files).•The PM values are subjected to various statistical analysis using metrics like coefficient of divergence (CoD), Pearson correlation coefficient (PCC) and mutual information (MI).•Computations for CoD, MI are performed using Python codes developed in-house while a function in NumPy module of Python was used for PCC calculations.

摘要

莱金瓦拉等人在2020年讨论的方法(以下简称“母文”)用于在战略地点建立全国性的背景颗粒物测量网络,以最优方式布置站点,用最少数量的站点获得最大的区域代表性颗粒物浓度。传统上,会在几个潜在站点进行现场颗粒物测量,并进行比较以确定该地点最具区域代表性的站点[4](Wongphatarakul等人,1998年)。“母文”提议在没有现场细颗粒物测量数据的情况下,使用卫星衍生的气溶胶代理数据(气溶胶光学厚度,AOD)。本文重点关注卫星数据处理的细节,这是“母文”中讨论的方法的一部分。以下是一些相关方面:

• 使用大气校正多角度实现(MAIAC)算法,从美国国家航空航天局(NASA)的Aqua和Terra卫星上搭载的中分辨率成像光谱仪(MODIS)仪器中检索高分辨率AOD。数据存储为1200×1200大小的网格,共有七个这样的网格覆盖印度陆地。这些网格经过合并、重新网格化,并乘以来自GEOS-Chem化学传输模型的转换因子以获得颗粒物值。使用CDO和NCL等标准工具集来处理卫星数据(*.nc文件)。

• 使用诸如发散系数(CoD)、皮尔逊相关系数(PCC)和互信息(MI)等指标,对颗粒物值进行各种统计分析。

• CoD、MI的计算使用内部开发的Python代码进行,而Python的NumPy模块中的一个函数用于PCC计算。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f2e/7317679/70fad825dafa/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验