Suppr超能文献

实验和计算方法在化学生物学和药物发现中提高结合亲和力。

Experimental and Computational Approaches to Improve Binding Affinity in Chemical Biology and Drug Discovery.

机构信息

In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India.

出版信息

Curr Top Med Chem. 2020;20(19):1651-1660. doi: 10.2174/156802662019200701164759.

Abstract

Drug discovery is one of the most complicated processes and establishment of a single drug may require multidisciplinary attempts to design efficient and commercially viable drugs. The main purpose of drug design is to identify a chemical compound or inhibitor that can bind to an active site of a specific cavity on a target protein. The traditional drug design methods involved various experimental based approaches including random screening of chemicals found in nature or can be synthesized directly in chemical laboratories. Except for the long cycle design and time, high cost is also the major issue of concern. Modernized computer-based algorithm including structure-based drug design has accelerated the drug design and discovery process adequately. Surprisingly from the past decade remarkable progress has been made concerned with all area of drug design and discovery. CADD (Computer Aided Drug Designing) based tools shorten the conventional cycle size and also generate chemically more stable and worthy compounds and hence reduce the drug discovery cost. This special edition of editorial comprises the combination of seven research and review articles set emphasis especially on the computational approaches along with the experimental approaches using a chemical synthesizing for the binding affinity in chemical biology and discovery as a salient used in de-novo drug designing. This set of articles exfoliates the role that systems biology and the evaluation of ligand affinity in drug design and discovery for the future.

摘要

药物发现是最复杂的过程之一,建立一种单一的药物可能需要多学科的努力来设计高效和商业可行的药物。药物设计的主要目的是确定一种化学化合物或抑制剂,它可以与靶蛋白上特定腔的活性部位结合。传统的药物设计方法涉及各种基于实验的方法,包括随机筛选自然界中发现的化学物质,或直接在化学实验室中合成。除了设计和时间周期长,高成本也是一个主要的关注点。基于计算机的现代化算法,包括基于结构的药物设计,已经充分加速了药物设计和发现的过程。令人惊讶的是,在过去的十年中,药物设计和发现的所有领域都取得了显著的进展。基于计算机辅助药物设计(CADD)的工具缩短了传统的周期大小,并且产生了化学上更稳定和有价值的化合物,从而降低了药物发现的成本。本期特刊由七篇研究和综述文章组成,特别强调了计算方法和化学合成方法的结合,用于化学生物学中的结合亲和力和发现,作为从头设计药物的一个突出用途。这组文章阐明了系统生物学和配体亲和力在药物设计和发现中的作用,为未来的发展提供了参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验