Suppr超能文献

基于机器人的多次测试中运动、感觉和认知表现的统计测量。

Statistical measures of motor, sensory and cognitive performance across repeated robot-based testing.

机构信息

Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.

Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.

出版信息

J Neuroeng Rehabil. 2020 Jul 2;17(1):86. doi: 10.1186/s12984-020-00713-2.

Abstract

BACKGROUND

Traditional clinical assessments are used extensively in neurology; however, they can be coarse, which can also make them insensitive to change. Kinarm is a robotic assessment system that has been used for precise assessment of individuals with neurological impairments. However, this precision also leads to the challenge of identifying whether a given change in performance reflects a significant change in an individual's ability or is simply natural variation. Our objective here is to derive confidence intervals and thresholds of significant change for Kinarm Standard Tests™ (KST).

METHODS

We assessed participants twice within 15 days on all tasks presently available in KST. We determined the 5-95% confidence intervals for each task parameter, and derived thresholds for significant change. We tested for learning effects and corrected for the false discovery rate (FDR) to identify task parameters with significant learning effects. Finally, we calculated intraclass correlation of type ICC [1, 2] (ICC-C) to quantify consistency across assessments.

RESULTS

We recruited an average of 56 participants per task. Confidence intervals for Z-Task Scores ranged between 0.61 and 1.55, and the threshold for significant change ranged between 0.87 and 2.19. We determined that 4/11 tasks displayed learning effects that were significant after FDR correction; these 4 tasks primarily tested cognition or cognitive-motor integration. ICC-C values for Z-Task Scores ranged from 0.26 to 0.76.

CONCLUSIONS

The present results provide statistical bounds on individual performance for KST as well as significant changes across repeated testing. Most measures of performance had good inter-rater reliability. Tasks with a higher cognitive burden seemed to be more susceptible to learning effects, which should be taken into account when interpreting longitudinal assessments of these tasks.

摘要

背景

传统的临床评估在神经病学中被广泛应用;然而,它们可能不够精细,因此也不够敏感。Kinarm 是一种机器人评估系统,用于对神经损伤患者进行精确评估。然而,这种精确性也带来了挑战,即无法确定性能的给定变化是反映个体能力的显著变化,还是仅仅是自然变化。我们的目标是为 Kinarm 标准测试(KST)确定置信区间和显著变化的阈值。

方法

我们在 15 天内对所有目前可用的 KST 任务对参与者进行了两次评估。我们确定了每个任务参数的 5-95%置信区间,并得出了显著变化的阈值。我们测试了学习效应,并校正了错误发现率(FDR),以识别具有显著学习效应的任务参数。最后,我们计算了类型 ICC [1, 2](ICC-C)的组内相关系数,以量化两次评估之间的一致性。

结果

我们平均为每个任务招募了 56 名参与者。Z 任务分数的置信区间在 0.61 到 1.55 之间,显著变化的阈值在 0.87 到 2.19 之间。我们确定有 4/11 个任务在经过 FDR 校正后显示出显著的学习效应;这些 4 个任务主要测试认知或认知运动整合。Z 任务分数的 ICC-C 值在 0.26 到 0.76 之间。

结论

本研究结果为 KST 的个体表现以及重复测试中的显著变化提供了统计边界。大多数性能测量具有良好的评分者间可靠性。具有较高认知负担的任务似乎更容易受到学习效应的影响,在解释这些任务的纵向评估时应考虑到这一点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98d5/7331240/5eabb5512d12/12984_2020_713_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验