Department of Cell and Molecular Biology, BMC, Box 596, Uppsala Universitet, SE-751 24 Uppsala, Sweden.
Present address: Department of Biochemistry, University of Cambridge, Cambridge, UK.
Microb Genom. 2020 Aug;6(8). doi: 10.1099/mgen.0.000402. Epub 2020 Jul 3.
Diplomonad parasites of the genus have adapted to colonizing different hosts, most notably the intestinal tract of mammals. The human-pathogenic species, , has been extensively studied at the genome and gene expression level, but no such information is available for other species. Comparative data would be particularly valuable for , which colonizes mice and is commonly used as a prototypic model for investigating host responses to intestinal parasitic infection. Here we report the draft-genome of . We discovered a highly streamlined genome, amongst the most densely encoded ever described for a nuclear eukaryotic genome. and share many known or predicted virulence factors, including cysteine proteases and a large repertoire of cysteine-rich surface proteins involved in antigenic variation. Different to , maintains tandem arrays of pseudogenized surface antigens at the telomeres, whereas intact surface antigens are present centrally in the chromosomes. The two classes of surface antigens engage in genetic exchange. Reconstruction of metabolic pathways from the genome suggest significant metabolic differences to . Additionally, encodes proteins that might be used to modulate the prokaryotic microbiota. The responsible genes have been introduced in the genus via lateral gene transfer from prokaryotic sources. Our findings point to important evolutionary steps in the genus as it adapted to different hosts and it provides a powerful foundation for mechanistic exploration of host-pathogen interaction in the -mouse pathosystem.
双滴虫寄生虫属已适应于定殖于不同宿主,最显著的是哺乳动物的肠道。人病原种 , ,在基因组和基因表达水平上已得到广泛研究,但其他 种则没有此类信息。对于 ,这将是特别有价值的,它定殖于小鼠,通常被用作研究宿主对肠道寄生虫感染反应的原型模型。在这里,我们报告了 的草案基因组。我们发现了一个高度精简的基因组,这是核真核生物基因组中编码密度最高的基因组之一。 和 共享许多已知或预测的毒力因子,包括半胱氨酸蛋白酶和涉及抗原变异的大量富含半胱氨酸的表面蛋白。与 不同, 在端粒处保持串联排列的假表面抗原,而完整的表面抗原则存在于染色体的中心。这两类表面抗原参与遗传交换。从 基因组重建代谢途径表明,与 相比,存在显著的代谢差异。此外, 编码的蛋白质可能用于调节原核微生物群落。这些基因是通过来自原核生物的水平基因转移引入 的属中的。我们的研究结果表明,在 属适应不同宿主的过程中发生了重要的进化步骤,并为 - 鼠病原体系统中宿主 - 病原体相互作用的机制探索提供了有力的基础。