Acib - Austrian Centre of Industrial Biotechnology, 1190, Vienna, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190, Vienna, Austria.
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800, Lyngby, Denmark.
Metab Eng. 2020 Sep;61:288-300. doi: 10.1016/j.ymben.2020.06.002. Epub 2020 Jun 30.
Cell line-specific, genome-scale metabolic models enable rigorous and systematic in silico investigation of cellular metabolism. Such models have recently become available for Chinese hamster ovary (CHO) cells. However, a key ingredient, namely an experimentally validated biomass function that summarizes the cellular composition, was so far missing. Here, we close this gap by providing extensive experimental data on the biomass composition of 13 parental and producer CHO cell lines under various conditions.
We report total protein, lipid, DNA, RNA and carbohydrate content, cell dry mass, and detailed protein and lipid composition. Furthermore, we present meticulous data on exchange rates between cells and environment and provide detailed experimental protocols on how to determine all of the above. The biomass composition is converted into cell line- and condition-specific biomass functions for use in cell line-specific, genome-scale metabolic models of CHO. Finally, flux balance analysis (FBA) is used to demonstrate consistency between in silico predictions and experimental analysis.
Our study reveals a strong variability of the total protein content and cell dry mass across cell lines. However, the relative amino acid composition is independent of the cell line and condition and thus needs not be explicitly measured for each new cell line. In contrast, the lipid composition is strongly influenced by the growth media and thus will have to be determined in each case. These cell line-specific variations in biomass composition have a small impact on growth rate predictions with FBA, as inaccuracies in the predictions are rather dominated by inaccuracies in the exchange rate spectra. Cell-specific biomass variations only become important if the experimental errors in the exchange rate spectra drop below twenty percent.
细胞系特异性、全基因组代谢模型使严格和系统的细胞代谢计算机模拟成为可能。最近,这些模型已经可用于中国仓鼠卵巢(CHO)细胞。然而,一个关键的组成部分,即总结细胞组成的实验验证的生物质功能,到目前为止还没有。在这里,我们通过提供 13 种亲本和生产 CHO 细胞系在各种条件下的生物质组成的广泛实验数据来填补这一空白。
我们报告了总蛋白、脂质、DNA、RNA 和碳水化合物含量、细胞干质量以及详细的蛋白质和脂质组成。此外,我们还提供了细胞与环境之间交换率的详细数据,并提供了如何确定上述所有内容的详细实验方案。生物质组成被转化为细胞系特异性、全基因组代谢模型的 CHO 细胞系特异性和条件特异性生物质功能。最后,通量平衡分析(FBA)用于证明计算机模拟预测与实验分析之间的一致性。
我们的研究揭示了细胞系之间总蛋白含量和细胞干质量的强烈可变性。然而,相对氨基酸组成与细胞系和条件无关,因此不需要为每个新细胞系明确测量。相比之下,脂质组成受生长培养基的强烈影响,因此在每种情况下都需要确定。这些生物质组成的细胞系特异性变化对 FBA 预测的生长速率影响很小,因为预测中的误差主要由交换率谱中的误差主导。只有当交换率谱中的实验误差降低到百分之二十以下时,细胞特异性的生物质变化才会变得重要。